If G is an uncountable group of regular cardinality ℵ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\aleph $$\end{document}, we shall denote by LLℵ(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak {L}L}_\aleph (G)$$\end{document} the set of all subgroups of G of cardinality ℵ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\aleph $$\end{document}. The aim of this paper is to describe the behaviour of groups G for which the set Cℵ(G)={X′|X∈LLℵ(G)}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal {C}}}_\aleph (G)=\{ X'\;|\; X\in {\mathfrak {L}L}_\aleph (G)\}$$\end{document} is finite, at least when G is locally graded and has no simple sections of cardinality ℵ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\aleph $$\end{document}. Among other results, it is proved that such a group has a finite commutator subgroup, provided that it contains an abelian subgroup of cardinality ℵ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\aleph $$\end{document}.
机构:
Shijiazhuang Railway Inst, Inst Math & Phys, Shijiazhuang 050043, Peoples R ChinaShijiazhuang Railway Inst, Inst Math & Phys, Shijiazhuang 050043, Peoples R China
Li, J. Y.
Wu, J.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Math, Singapore, SingaporeShijiazhuang Railway Inst, Inst Math & Phys, Shijiazhuang 050043, Peoples R China