“Linearized” dynamical mean-field theory for the Mott-Hubbard transition

被引:0
|
作者
R. Bulla
M. Potthoff
机构
[1] Theoretische Physik III,
[2] Elektronische Korrelationen und Magnetismus,undefined
[3] Universität Augsburg,undefined
[4] 86135 Augsburg,undefined
[5] Germany,undefined
[6] Theoretische Festkörperphysik,undefined
[7] Institut für Physik,undefined
[8] Humboldt-Universität zu Berlin,undefined
[9] 10115 Berlin,undefined
[10] Germany,undefined
关键词
PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 71.27.+a Strongly correlated electron systems; heavy fermions - 71.30.+h Metal-insulator transitions and other electronic transitions;
D O I
暂无
中图分类号
学科分类号
摘要
The Mott-Hubbard metal-insulator transition is studied within a simplified version of the Dynamical Mean-Field Theory (DMFT) in which the coupling between the impurity level and the conduction band is approximated by a single pole at the Fermi energy. In this approach, the DMFT equations are linearized, and the value for the critical Coulomb repulsion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} can be calculated analytically. For the symmetric single-band Hubbard model at zero temperature, the critical value is found to be given by 6 times the square root of the second moment of the free (U=0) density of states. This result is in good agreement with the numerical value obtained from the Projective Selfconsistent Method and recent Numerical Renormalization Group calculations for the Bethe and the hypercubic lattice in infinite dimensions. The generalization to more complicated lattices is discussed. The “linearized DMFT” yields plausible results for the complete geometry dependence of the critical interaction.
引用
收藏
页码:257 / 264
页数:7
相关论文
共 50 条
  • [31] Renormalized parameters and perturbation theory in dynamical mean-field theory for the Hubbard model
    Hewson, A. C.
    [J]. PHYSICAL REVIEW B, 2016, 94 (19)
  • [32] MOTT-HUBBARD TRANSITION IN INFINITE DIMENSIONS
    ROZENBERG, MJ
    ZHANG, XY
    KOTLIAR, G
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (08) : 1236 - 1239
  • [33] Mott-Hubbard transition in infinite dimensions
    Tong, NH
    Shen, SQ
    Pu, FC
    [J]. PHYSICAL REVIEW B, 2001, 64 (23)
  • [34] Role of disorder in the Mott-Hubbard transition
    Kim, Ki-Seok
    [J]. PHYSICAL REVIEW B, 2006, 73 (23):
  • [35] Mott-Hubbard transition in infinite dimensions
    Noack, RM
    Gebhard, F
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (09) : 1915 - 1918
  • [36] Mott transition and pseudogap of the square-lattice Hubbard model: Results from center-focused cellular dynamical mean-field theory
    Meixner, Michael
    Menke, Henri
    Klett, Marcel
    Heinzelmann, Sarah
    Andergassen, Sabine
    Hansmann, Philipp
    Schaefer, Thomas
    [J]. SCIPOST PHYSICS, 2024, 16 (02):
  • [37] Dynamical slave-boson mean-field study of the Mott transition in the Hubbard model in the large-z limit
    Zhou, Sen
    Liang, Long
    Wang, Ziqiang
    [J]. PHYSICAL REVIEW B, 2020, 101 (03)
  • [38] Dynamical mean-field theory for the normal phase of the attractive Hubbard model
    Keller, M
    Metzner, W
    Schollwöck, U
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2002, 126 (3-4) : 961 - 977
  • [39] Dynamical Mean-Field Theory for the Normal Phase of the Attractive Hubbard Model
    M. Keller
    W. Metzner
    U. Schollwöck
    [J]. Journal of Low Temperature Physics, 2002, 126 : 961 - 977
  • [40] Dynamical mean-field theory of two-orbital Hubbard model
    Ni, Yu
    Sun, Jian
    Quan, Ya-Min
    Luo, Dong-Qi
    Song, Yun
    [J]. Wuli Xuebao/Acta Physica Sinica, 2022, 71 (14):