Mott-Hubbard transition in infinite dimensions

被引:28
|
作者
Tong, NH
Shen, SQ
Pu, FC
机构
[1] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100080, Peoples R China
[2] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[3] Guangzhou Normal Coll, Dept Phys, Guangzhou 510400, Peoples R China
关键词
D O I
10.1103/PhysRevB.64.235109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the unanalytical structure of metal-insulator transition (MIT) in infinite dimensions. A multiple-valued structure in Green's function and other thermodynamical quantities with respect to the interaction strength U are observed at low temperatures by introducing a transformation into the dynamical mean-field equation of Hubbard model. A complete description of stable, metastable, and unstable phases is established in the regime U-c1(T) < U < U-c2(T). The Maxwell construction is performed to evaluate the MIT line U*(T). We show how the first-order MIT at U* (T) for T>0 evolves into the second-order one at U-c2(0) for T=0. The phase diagram near MIT is presented.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Mott-Hubbard Transition in Infinite Dimensions
    Inst. de Physique Théorique, Université de Fribourg, CH-1700 Fribourg, Switzerland
    不详
    [J]. Phys Rev Lett, 9 (1915-1918):
  • [2] MOTT-HUBBARD TRANSITION IN INFINITE DIMENSIONS
    ROZENBERG, MJ
    ZHANG, XY
    KOTLIAR, G
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (08) : 1236 - 1239
  • [3] Mott-Hubbard transition in infinite dimensions
    Noack, RM
    Gebhard, F
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (09) : 1915 - 1918
  • [4] MOTT-HUBBARD TRANSITION IN INFINITE DIMENSIONS .2.
    ROZENBERG, MJ
    KOTLIAR, G
    ZHANG, XY
    [J]. PHYSICAL REVIEW B, 1994, 49 (15): : 10181 - 10193
  • [5] Mott-Hubbard insulator in infinite dimensions
    Kalinowski, E
    Gebhard, F
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2002, 126 (3-4) : 979 - 1007
  • [6] Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions
    Schlipf, J
    Jarrell, M
    van Dongen, PGJ
    Blümer, N
    Kehrein, S
    Pruschke, T
    Vollhardt, D
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (24) : 4890 - 4893
  • [7] Analytical and numerical treatment of the Mott-Hubbard insulator in infinite dimensions
    M. P. Eastwood
    F. Gebhard
    E. Kalinowski
    S. Nishimoto
    R. M. Noack
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 35 : 155 - 175
  • [8] Analytical and numerical treatment of the Mott-Hubbard insulator in infinite dimensions
    Eastwood, MP
    Gebhard, F
    Kalinowski, E
    Nishimoto, S
    Noack, RM
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2003, 35 (02): : 155 - 175
  • [9] Transition characteristics of a Mott-Hubbard system in large dimensions
    Hong, J
    Kim, TS
    [J]. PHYSICAL REVIEW B, 2000, 62 (19): : 12581 - 12584
  • [10] Fate of the false Mott-Hubbard transition in two dimensions
    Schaefer, T.
    Geles, F.
    Rost, D.
    Rohringer, G.
    Arrigoni, E.
    Held, K.
    Bluemer, N.
    Aichhorn, M.
    Toschi, A.
    [J]. PHYSICAL REVIEW B, 2015, 91 (12):