Analytical and numerical treatment of the Mott-Hubbard insulator in infinite dimensions

被引:0
|
作者
M. P. Eastwood
F. Gebhard
E. Kalinowski
S. Nishimoto
R. M. Noack
机构
[1] University of California,Department of Chemistry and Biochemistry
[2] Philipps-Universität Marburg,Fachbereich Physik
[3] Universität Stuttgart,Institut für Theoretische Physik III
关键词
Numerical Approach; Hubbard Model; Numerical Treatment; Bethe Lattice; Exact Diagonalization;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the density of states in the half-filled Hubbard model on a Bethe lattice with infinite connectivity. Based on our analytical results to second order in t/U, we propose a new ‘Fixed-Energy Exact Diagonalization’ scheme for the numerical study of the Dynamical Mean-Field Theory. Corroborated by results from the Random Dispersion Approximation, we find that the gap opens at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U_{\rm c}=4.43 \pm 0.05$\end{document}. Moreover, the density of states near the gap increases algebraically as a function of frequency with an exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha=1/2$\end{document} in the insulating phase. We critically examine other analytical and numerical approaches and specify their merits and limitations when applied to the Mott-Hubbard insulator.
引用
收藏
页码:155 / 175
页数:20
相关论文
共 50 条
  • [1] Analytical and numerical treatment of the Mott-Hubbard insulator in infinite dimensions
    Eastwood, MP
    Gebhard, F
    Kalinowski, E
    Nishimoto, S
    Noack, RM
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2003, 35 (02): : 155 - 175
  • [2] Mott-Hubbard insulator in infinite dimensions
    Kalinowski, E
    Gebhard, F
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2002, 126 (3-4) : 979 - 1007
  • [3] Mott-Hubbard Transition in Infinite Dimensions
    Inst. de Physique Théorique, Université de Fribourg, CH-1700 Fribourg, Switzerland
    不详
    [J]. Phys Rev Lett, 9 (1915-1918):
  • [4] MOTT-HUBBARD TRANSITION IN INFINITE DIMENSIONS
    ROZENBERG, MJ
    ZHANG, XY
    KOTLIAR, G
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (08) : 1236 - 1239
  • [5] Mott-Hubbard transition in infinite dimensions
    Tong, NH
    Shen, SQ
    Pu, FC
    [J]. PHYSICAL REVIEW B, 2001, 64 (23)
  • [6] Mott-Hubbard transition in infinite dimensions
    Noack, RM
    Gebhard, F
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (09) : 1915 - 1918
  • [7] Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions
    Schlipf, J
    Jarrell, M
    van Dongen, PGJ
    Blümer, N
    Kehrein, S
    Pruschke, T
    Vollhardt, D
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (24) : 4890 - 4893
  • [8] Mott–Hubbard Insulator in Infinite Dimensions
    Eva Kalinowski
    Florian Gebhard
    [J]. Journal of Low Temperature Physics, 2002, 126 : 979 - 1007
  • [9] MOTT-HUBBARD TRANSITION IN INFINITE DIMENSIONS .2.
    ROZENBERG, MJ
    KOTLIAR, G
    ZHANG, XY
    [J]. PHYSICAL REVIEW B, 1994, 49 (15): : 10181 - 10193
  • [10] Infinite single-particle bandwidth of a Mott-Hubbard insulator
    Freericks, J. K.
    Cohn, J. R.
    van Dongen, P. G. J.
    Krishnamurthy, H. R.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (13):