Upper bounds on the chromatic number of triangle-free graphs with a forbidden subtree

被引:0
|
作者
Xiao Wang
Baoyindureng Wu
机构
[1] Shangluo University,College of Mathematics and Computer Application
[2] Xinjiang University,College of Mathematics and System Sciences
来源
关键词
Chromatic number; Triangle-free graph; Induced subgraph; Forbidden subgraph;
D O I
暂无
中图分类号
学科分类号
摘要
Gyárfás conjectured that for a given forest F, there exists an integer function f(F, x) such that χ(G)≤f(F,ω(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G)\le f(F,\omega (G))$$\end{document} for each F-free graph G, where ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (G)$$\end{document} is the clique number of G. The broom B(m, n) is the tree of order m+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n$$\end{document} obtained from identifying a vertex of degree 1 of the path Pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_m$$\end{document} with the center of the star K1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,n}$$\end{document}. In this note, we prove that every connected, triangle-free and B(m, n)-free graph is (m+n-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+n-2)$$\end{document}-colorable as an extension of a result of Randerath and Schiermeyer and a result of Gyárfás, Szemeredi and Tuza. In addition, it is also shown that every connected, triangle-free, C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}-free and T-free graph is (p-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-2)$$\end{document}-colorable, where T is a tree of order p≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 4$$\end{document} and T≇K1,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\not \cong K_{1,3}$$\end{document}.
引用
收藏
页码:28 / 34
页数:6
相关论文
共 50 条
  • [1] Upper bounds on the chromatic number of triangle-free graphs with a forbidden subtree
    Wang, Xiao
    Wu, Baoyindureng
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 28 - 34
  • [2] AN UPPER BOUND ON THE FRACTIONAL CHROMATIC NUMBER OF TRIANGLE-FREE SUBCUBIC GRAPHS
    Liu, Chun-Hung
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1102 - 1136
  • [3] Upper bounds of the energy of triangle-free graphs in terms of matching number
    Tian, Fenglei
    Wong, Dein
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (01): : 20 - 28
  • [4] Cycles in triangle-free graphs of large chromatic number
    Kostochka, Alexandr
    Sudakov, Benny
    Verstraete, Jacques
    [J]. COMBINATORICA, 2017, 37 (03) : 481 - 494
  • [5] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    [J]. Combinatorica, 2017, 37 : 481 - 494
  • [6] Circular chromatic number of triangle-free hexagonal graphs
    Sparl, Petra
    Zerovnik, Janez
    [J]. SOR'07: PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2007, : 75 - 79
  • [7] The fractional chromatic number of triangle-free graphs with Δ ≤ 3
    Lu, Linyuan
    Peng, Xing
    [J]. DISCRETE MATHEMATICS, 2012, 312 (24) : 3502 - 3516
  • [8] The fractional chromatic number of triangle-free subcubic graphs
    Ferguson, David G.
    Kaiser, Tomas
    Kral, Daniel
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 184 - 220
  • [9] STAR CHROMATIC NUMBER OF TRIANGLE-FREE PLANAR GRAPHS
    GAO, GG
    [J]. APPLIED MATHEMATICS LETTERS, 1994, 7 (01) : 75 - 78
  • [10] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Arkadiusz Pawlik
    Jakub Kozik
    Tomasz Krawczyk
    Michał Lasoń
    Piotr Micek
    William T. Trotter
    Bartosz Walczak
    [J]. Discrete & Computational Geometry, 2013, 50 : 714 - 726