Upper bounds on the chromatic number of triangle-free graphs with a forbidden subtree

被引:4
|
作者
Wang, Xiao [1 ]
Wu, Baoyindureng [2 ]
机构
[1] Shangluo Univ, Coll Math & Comp Applicat, Shangluo 726000, Shanxi, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Chromatic number; Triangle-free graph; Induced subgraph; Forbidden subgraph; SUBGRAPHS;
D O I
10.1007/s10878-015-9929-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gyarfas conjectured that for a given forest F, there exists an integer function f(F, x) such that chi(G) <= f(F,omega(G)) for each F-free graph G, where omega(G) is the clique number of G. The broom B(m, n) is the tree of order m+n obtained from identifying a vertex of degree 1 of the path P-m with the center of the star k(1,n) . In this note, we prove that every connected, triangle-free and B(m, n)-free graph is-colorable as an extension of a result of Randerath and Schiermeyer and a result of Gyarfas, Szemeredi and Tuza. In addition, it is also shown that every connected, triangle-free,C-4-free and T-free graph is(p-2)-colorable, where T is a tree of order p >= 4 and T not congruent to K-1,K-3 .
引用
收藏
页码:28 / 34
页数:7
相关论文
共 50 条
  • [1] Upper bounds on the chromatic number of triangle-free graphs with a forbidden subtree
    Xiao Wang
    Baoyindureng Wu
    [J]. Journal of Combinatorial Optimization, 2017, 33 : 28 - 34
  • [2] AN UPPER BOUND ON THE FRACTIONAL CHROMATIC NUMBER OF TRIANGLE-FREE SUBCUBIC GRAPHS
    Liu, Chun-Hung
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1102 - 1136
  • [3] Upper bounds of the energy of triangle-free graphs in terms of matching number
    Tian, Fenglei
    Wong, Dein
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (01): : 20 - 28
  • [4] Cycles in triangle-free graphs of large chromatic number
    Kostochka, Alexandr
    Sudakov, Benny
    Verstraete, Jacques
    [J]. COMBINATORICA, 2017, 37 (03) : 481 - 494
  • [5] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    [J]. Combinatorica, 2017, 37 : 481 - 494
  • [6] Circular chromatic number of triangle-free hexagonal graphs
    Sparl, Petra
    Zerovnik, Janez
    [J]. SOR'07: PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2007, : 75 - 79
  • [7] The fractional chromatic number of triangle-free graphs with Δ ≤ 3
    Lu, Linyuan
    Peng, Xing
    [J]. DISCRETE MATHEMATICS, 2012, 312 (24) : 3502 - 3516
  • [8] The fractional chromatic number of triangle-free subcubic graphs
    Ferguson, David G.
    Kaiser, Tomas
    Kral, Daniel
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 184 - 220
  • [9] STAR CHROMATIC NUMBER OF TRIANGLE-FREE PLANAR GRAPHS
    GAO, GG
    [J]. APPLIED MATHEMATICS LETTERS, 1994, 7 (01) : 75 - 78
  • [10] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Arkadiusz Pawlik
    Jakub Kozik
    Tomasz Krawczyk
    Michał Lasoń
    Piotr Micek
    William T. Trotter
    Bartosz Walczak
    [J]. Discrete & Computational Geometry, 2013, 50 : 714 - 726