Combinatorial interior point methods for generalized network flow problems

被引:0
|
作者
Donald Goldfarb
Yiqing Lin
机构
[1] Department of Industrial Engineering and Operations Research,
[2] Columbia University,undefined
[3] New York,undefined
[4] New York 10027,undefined
[5] e-mail: goldfarb@columbia.edu,undefined
[6] United Technologies Research Center,undefined
[7] East Hartford,undefined
[8] Connecticut 06108,undefined
[9] e-mail: liny@utrc. utc.com,undefined
来源
Mathematical Programming | 2002年 / 93卷
关键词
Input Data; Potential Function; Minimum Cost; Generalize Circulation; Interior Point;
D O I
暂无
中图分类号
学科分类号
摘要
 We present combinatorial interior point methods for the generalized minimum cost flow and the generalized circulation problems based on Wallacher and Zimmermann's combinatorial interior point method for the minimum cost network flow problem. The algorithms have features of both a combinatorial algorithm and an interior point method. They work towards optimality by iteratively reducing the value of a potential function while maintaining interior point solutions. At each iteration, flow is augmented along a generalized circulation, which is computed by solving a TVPI (Two Variables Per Inequality) system. The algorithms run in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} time, where m and n are, respectively, the number of arcs and nodes in the graph, and L is the length of the input data.
引用
收藏
页码:227 / 246
页数:19
相关论文
共 50 条