Morphology of W fibers and kinetic undercooling in directionally solidified NiAl–W eutectic alloy

被引:0
|
作者
Jianjun Gao
Zhilong Zhao
Lufeng Wei
Kai Cui
Jingying Guo
Sen Chen
Zhirong Hu
Yalong Liu
Lin Liu
机构
[1] Northwestern Polytechnical University,School of Mechanical Engineering
[2] Northwestern Polytechnical University,State Key Laboratory of Solidification Processing
来源
关键词
Kinetic Undercooling; NiAl Matrix; Fibrous Phase; HAADF STEM Image; Liquid Free Energy;
D O I
暂无
中图分类号
学科分类号
摘要
The relationship between the cross-sectional shape of W fibers and kinetic undercooling in directionally solidified (DS) NiAl–W eutectic alloys was investigated. When the growth rate was less than 8 µm/s, the cross-sectional shape of W fibers was hexagonal (faceted); conversely, when the growth rate was more than 8 µm/s, their cross-sectional shape was elliptical (nonfaceted). Meanwhile, the NiAl matrix and W fibers in DS NiAl–W eutectic alloys presented a particular crystallographic orientation. The crystallographic orientation between NiAl matrix and W fibers was [1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}11]NiAl//[200]W in the growth rate of 6 µm/s, and [1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}11]NiAl//[1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}11]W in the growth rate of 8 µm/s. A critical kinetic undercooling ΔTk,Wc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta T_{k,W}^{c} $$\end{document} can be used to predict the transition from the faceted to nonfaceted growth of W fibers in DS NiAl–W eutectic alloys. When the kinetic undercooling ΔTk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta T_{k} $$\end{document} of the W phase was less than ΔTk,Wc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta T_{k,W}^{c} $$\end{document}, the W fibers’ growth was faceted with a hexagonal shape, whereas when ΔTk>ΔTk,Wc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta T_{k} > \Delta T_{k,W}^{c} $$\end{document}, the W fibers exhibited nonfaceted growth with elliptical shape.
引用
收藏
页码:12523 / 12533
页数:10
相关论文
共 50 条
  • [41] THE STRUCTURE OF DIRECTIONALLY SOLIDIFIED GASB-CRSB EUTECTIC ALLOY
    UMEHARA, Y
    KODA, S
    METALLOGRAPHY, 1987, 20 (03): : 311 - 319
  • [42] Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy
    Jianfei Zhang
    Xuewei Ma
    Huiping Ren
    Lin Chen
    Zili Jin
    Zhenliang Li
    Jun Shen
    JOM, 2016, 68 : 178 - 184
  • [43] Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy
    Zhang, Jianfei
    Ma, Xuewei
    Ren, Huiping
    Chen, Lin
    Jin, Zili
    Li, Zhenliang
    Shen, Jun
    JOM, 2016, 68 (01) : 178 - 184
  • [44] Effect of a high magnetic field on solidification structure in directionally solidified NiAl-Cr(Mo)-Hf eutectic alloy
    Liu, Huan
    Xuan, Weidong
    Xie, Xinliang
    Yu, Jianbo
    Wang, Jiang
    Li, Xi
    Zhong, Yunbo
    Ren, Zhongming
    Wang, Hui
    Dai, Yinming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 737 : 74 - 82
  • [45] High temperature compressive properties and room temperature fracture toughness of directionally solidified NiAl-based eutectic alloy
    Liang, Yongchun
    Guo, Jianting
    Xie, Yi
    Zhou, Lanzhang
    Hu, Zhuangqi
    MATERIALS & DESIGN, 2009, 30 (06) : 2181 - 2185
  • [46] THE OXIDATION OF A DIRECTIONALLY SOLIDIFIED COBALT-TUNGSTEN EUTECTIC ALLOY
    ALIPRANDO, JJ
    SHATYNSKI, SR
    OXIDATION OF METALS, 1981, 15 (5-6): : 455 - 469
  • [47] STRUCTUREAND PROPERTY OF DIRECTIONALLY SOLIDIFIED EUTECTIC Bi/MnBi ALLOY
    FU Xuli
    LI Jun
    WANG Wu
    YANG Yongqing
    SHU Guangji Southeast University
    Acta Metallurgica Sinica(English Edition), 1992, (12) : 512 - 515
  • [48] Structure and Properties of a Directionally Solidified Eutectic AlSi Alloy.
    Holecek, S.
    Stolar, P.
    Aluminium, 1976, 52 (12): : 741 - 744
  • [49] ELEVATED-TEMPERATURE TENSILE PROPERTIES OF NI-W, NI-W-FE AND NI-W-CR DIRECTIONALLY SOLIDIFIED EUTECTIC ALLOYS
    WAKASHIMA, K
    KAWAI, H
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1985, 4 (08) : 999 - 1001
  • [50] Effects of Hf additions on high-temperature mechanical properties of a directionally solidified NiAl/Cr(Mo) eutectic alloy
    Cui, C.Y.
    Guo, J.T.
    Ye, H.Q.
    Journal of Alloys and Compounds, 2008, 463 (1-2): : 263 - 270