Morphology of W fibers and kinetic undercooling in directionally solidified NiAl–W eutectic alloy

被引:0
|
作者
Jianjun Gao
Zhilong Zhao
Lufeng Wei
Kai Cui
Jingying Guo
Sen Chen
Zhirong Hu
Yalong Liu
Lin Liu
机构
[1] Northwestern Polytechnical University,School of Mechanical Engineering
[2] Northwestern Polytechnical University,State Key Laboratory of Solidification Processing
来源
关键词
Kinetic Undercooling; NiAl Matrix; Fibrous Phase; HAADF STEM Image; Liquid Free Energy;
D O I
暂无
中图分类号
学科分类号
摘要
The relationship between the cross-sectional shape of W fibers and kinetic undercooling in directionally solidified (DS) NiAl–W eutectic alloys was investigated. When the growth rate was less than 8 µm/s, the cross-sectional shape of W fibers was hexagonal (faceted); conversely, when the growth rate was more than 8 µm/s, their cross-sectional shape was elliptical (nonfaceted). Meanwhile, the NiAl matrix and W fibers in DS NiAl–W eutectic alloys presented a particular crystallographic orientation. The crystallographic orientation between NiAl matrix and W fibers was [1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}11]NiAl//[200]W in the growth rate of 6 µm/s, and [1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}11]NiAl//[1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar{1} $$\end{document}11]W in the growth rate of 8 µm/s. A critical kinetic undercooling ΔTk,Wc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta T_{k,W}^{c} $$\end{document} can be used to predict the transition from the faceted to nonfaceted growth of W fibers in DS NiAl–W eutectic alloys. When the kinetic undercooling ΔTk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta T_{k} $$\end{document} of the W phase was less than ΔTk,Wc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta T_{k,W}^{c} $$\end{document}, the W fibers’ growth was faceted with a hexagonal shape, whereas when ΔTk>ΔTk,Wc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta T_{k} > \Delta T_{k,W}^{c} $$\end{document}, the W fibers exhibited nonfaceted growth with elliptical shape.
引用
收藏
页码:12523 / 12533
页数:10
相关论文
共 50 条
  • [21] Influence of Fiber Size and Interface Morphology on the Electrochemical Corrosion Resistance of Directionally Solidified NiAl-9Mo Eutectic Alloy
    Guo, Junbo
    Zhong, Hong
    Liu, Zhenpeng
    Yang, Luyan
    Li, Shuangming
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2019, 48 (04): : 1116 - 1123
  • [22] Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy
    Univ of Tennessee, Knoxville, United States
    J Mater Res, 5 (1159-1170):
  • [23] DEFORMATION AND FRACTURE OF A DIRECTIONALLY SOLIDIFIED NIAL-28CR-6MO EUTECTIC ALLOY
    CHEN, XF
    JOHNSON, DR
    NOEBE, RD
    OLIVER, BF
    JOURNAL OF MATERIALS RESEARCH, 1995, 10 (05) : 1159 - 1170
  • [24] Perfect cellular eutectic growth in directionally solidified NiAl-Cr(Mo) hypereutectic alloy
    Shang, Zhao
    Shen, Jun
    Zhang, Jianfei
    Wang, Lei
    Fu, Hengzhi
    JOURNAL OF CRYSTAL GROWTH, 2012, 354 (01) : 152 - 156
  • [25] Investigation on superplastic of directionally solidified NiAl multiphase alloy
    Cui, CY
    Guo, JT
    Qi, YH
    Ye, HQ
    ACTA METALLURGICA SINICA, 2002, 38 (07) : 679 - 683
  • [26] Microstructure Evolution and Mechanical Properties of a Directionally Solidified NiAl-Mo Hyper-Eutectic Alloy
    Zhang, Jianfei
    Xu, Pengfei
    Dong, Yuelei
    Hao, Wenwei
    Zhang, Yuhao
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2019, 48 (11): : 3514 - 3518
  • [27] Microstructure Evolution and Mechanical Properties of a Directionally Solidified NiAl-Mo Hyper-Eutectic Alloy
    Zhang Jianfei
    Xu Pengfei
    Dong Yuelei
    Hao Wenwei
    Zhang Yuhao
    RARE METAL MATERIALS AND ENGINEERING, 2019, 48 (11) : 3514 - 3518
  • [28] Effects of rhenium alloying on the microstructures and mechanical properties of directionally solidified NiAl-Mo eutectic alloy
    Misra, A
    Wu, AL
    Gibala, R
    HIGH-TEMPERATURE ORDERED INTERMETALLIC ALLOYS VII, 1997, 460 : 743 - 754
  • [29] MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DIRECTIONALLY SOLIDIFIED NiAl-Cr(Mo)-Hf(Ho) EUTECTIC ALLOY
    Xiao Xuan
    Xie Yi
    Guo Jianting
    ACTA METALLURGICA SINICA, 2010, 46 (06) : 701 - 707
  • [30] SOME OBSERVATIONS ON GROWTH OF DIRECTIONALLY SOLIDIFIED EUTECTIC ALLOY
    ARORA, OP
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1975, 6 (06): : 1305 - 1309