Let P be a Camina p-group that acts on a group Q in such a way that CP(x)⊆P′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbf{C}_P(x) \subseteq P'}$$\end{document} for all nonidentity elements x∈Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${x \in Q}$$\end{document}. We show that P must be isomorphic to the quaternion group Q8. If P has class 2, this is a known result, and this paper corrects a previously published erroneous proof of the general case.