CAMINA p-groups that are generalized Frobenius complements

被引:0
|
作者
I. M. Isaacs
Mark L. Lewis
机构
[1] University of Wisconsin,Mathematics Department
[2] Kent State University,Department of Mathematical Sciences
来源
Archiv der Mathematik | 2015年 / 104卷
关键词
Camina group; Frobenius complement; Primary 20D10; 20D15; Secondary 20C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let P be a Camina p-group that acts on a group Q in such a way that CP(x)⊆P′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{C}_P(x) \subseteq P'}$$\end{document} for all nonidentity elements x∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in Q}$$\end{document}. We show that P must be isomorphic to the quaternion group Q8. If P has class 2, this is a known result, and this paper corrects a previously published erroneous proof of the general case.
引用
收藏
页码:401 / 405
页数:4
相关论文
共 50 条
  • [31] CHARACTERS OF P-GROUPS
    FORD, CE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (04) : 595 - 601
  • [32] On commutators in p-groups
    Kappe, LC
    Morse, RF
    JOURNAL OF GROUP THEORY, 2005, 8 (04) : 415 - 429
  • [33] On Sushchansky p-groups
    Bondarenko, Ievgen V.
    Savchuk, Dmytro M.
    ALGEBRA & DISCRETE MATHEMATICS, 2007, (02): : 22 - 42
  • [34] Disposition p-groups
    Peter Schmid
    Archiv der Mathematik, 2017, 108 : 113 - 121
  • [35] Morphic p-groups
    Aliniaeifard, Farid
    Li, Yuanlin
    Nicholson, W. K.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (10) : 1864 - 1869
  • [36] On chernikov P-groups
    Gudivok P.M.
    Shapochka I.V.
    Ukrainian Mathematical Journal, 1999, 51 (3) : 329 - 342
  • [37] On Cernikov p-groups
    Heng, Lv
    Chen, Guiyun
    DISCRETE MATHEMATICS, 2008, 308 (21) : 4992 - 4997
  • [38] On group actions of p-groups on p′-groups
    Yang, Yong
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (01) : 355 - 359
  • [39] Smooth p-Groups
    Schnabel, H
    ARCHIV DER MATHEMATIK, 2002, 78 (01) : 1 - 7
  • [40] Disposition p-groups
    Schmid, Peter
    ARCHIV DER MATHEMATIK, 2017, 108 (02) : 113 - 121