We characterize rings in which every left ideal generated by an idempotent different from 0 and 1 is either a maximal left ideal or a minimal left ideal. In the commutative case, we give a characterization in terms of topological properties of the maximal spectrum with the Zariski topology. We also consider a strictly weaker variant of this property, defined almost similarly, and characterize those rings that have the property in question.
机构:
Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, RA-1428 Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, RA-1428 Buenos Aires, DF, Argentina
Carando, Daniel
Galicer, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, RA-1428 Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat Pab 1, RA-1428 Buenos Aires, DF, Argentina