Rings in which idempotents generate maximal or minimal ideals

被引:0
|
作者
Themba Dube
Mojtaba Ghirati
Sajad Nazari
Ali Taherifar
机构
[1] University of South Africa,Department of Mathematical Sciences
[2] Yasouj University,Department of Mathematics
[3] University of Orléans,Insa Centre Val de Loire
来源
Algebra universalis | 2020年 / 81卷
关键词
Ring; Commutative ring; Maximal ideal; Maximal spectrum; Zariski topology; Minimal ideal; Idempotent; Boolean algebra; 03G05; 12E15; 13A15; 16B99; 54C40;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize rings in which every left ideal generated by an idempotent different from 0 and 1 is either a maximal left ideal or a minimal left ideal. In the commutative case, we give a characterization in terms of topological properties of the maximal spectrum with the Zariski topology. We also consider a strictly weaker variant of this property, defined almost similarly, and characterize those rings that have the property in question.
引用
收藏
相关论文
共 50 条
  • [21] IDEMPOTENTS IN NEAR-RINGS WITH MINIMAL CONDITION
    SCOTT, SD
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 6 (MAY): : 464 - 466
  • [22] MINIMAL IDEALS IN GROUP RINGS
    PASSMAN, DS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 31 (01) : 81 - +
  • [23] MAXIMAL IDEALS IN NEAR RINGS OF POLYNOMIALS
    CLAY, JR
    WATKINS, DD
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 145 - &
  • [24] ON QUASI MAXIMAL IDEALS OF COMMUTATIVE RINGS
    Alan, Murat
    Kilic, Mesut
    Koc, Suat
    Tekir, Unsal
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2023, 76 (12): : 1801 - 1810
  • [25] INVARIANT MAXIMAL IDEALS OF COMMUTATIVE RINGS
    WEHRFRITZ, BAF
    [J]. JOURNAL OF ALGEBRA, 1979, 56 (02) : 472 - 480
  • [26] Maximal Ideals in Countable Rings, Constructively
    Blechschmidt, Ingo
    Schuster, Peter
    [J]. REVOLUTIONS AND REVELATIONS IN COMPUTABILITY, CIE 2022, 2022, 13359 : 24 - 38
  • [27] FURTHER STUDY OF RINGS IN WHICH ESSENTIAL MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE
    Nam, Sangbok
    Lee, Taehee
    Kim, Hwajoon
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (06): : 1173 - 1180
  • [28] PRINCIPAL IDEALS WHICH ARE MAXIMAL IDEALS IN BANACH ALGEBRAS
    CROWNOVER, RM
    [J]. STUDIA MATHEMATICA, 1969, 33 (03) : 299 - +
  • [29] Covering maximal ideals with minimal primes
    Dube, Themba
    Ighedo, Oghenetega
    [J]. ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 411 - 424
  • [30] Covering maximal ideals with minimal primes
    Themba Dube
    Oghenetega Ighedo
    [J]. Algebra universalis, 2015, 74 : 411 - 424