On Fractional Analogs of Dirichlet and Neumann Problems for the Laplace Equation

被引:0
|
作者
Batirkhan Turmetov
Kulzina Nazarova
机构
[1] Ahmet Yesevi University,
来源
关键词
Laplace equation; Dirichlet problem; Neumann problem; Fractional derivative; Riemann–Liouville operator; Caputo operator; uniqueness; existence; Primary 31A05; Secondary 35J05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate solvability of fractional analogs of the Dirichlet and Neumann boundary-value problems for the Laplace equation. Operators of fractional differentiation in the Riemann–Liouville and Caputo sense are considered as boundary operators. The considered problems are solved by reducing them to Fredholm integral equations. Theorems on existence and uniqueness of solutions of the problems are proved.
引用
收藏
相关论文
共 50 条
  • [31] Dirichlet and Neumann Problems for String Equation, Poncelet Problem and Pell-Abel Equation
    Burskii, Vladimir P.
    Zhedanov, Alexei S.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [32] Laplace's equation and the Dirichlet-Neumann map: a new mode for Mikhlin's method
    Helsing, J
    Wadbro, E
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 202 (02) : 391 - 410
  • [33] The Method of Integral Equations in the Mixed Dirichlet–Neumann Problem for the Laplace Equation in the Exterior of Cuts in the Plane
    P. A. Krutitskii
    A. I. Sgibnev
    Differential Equations, 2001, 37 : 1363 - 1375
  • [34] Semilinear Fractional Elliptic Problems with Mixed Dirichlet-Neumann Boundary Conditions
    José Carmona
    Eduardo Colorado
    Tommaso Leonori
    Alejandro Ortega
    Fractional Calculus and Applied Analysis, 2020, 23 : 1208 - 1239
  • [35] SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (04) : 1208 - 1239
  • [36] An Equivalence Between the Dirichlet and the Neumann Problem for the Laplace Operator
    Lucian Beznea
    Mihai N. Pascu
    Nicolae R. Pascu
    Potential Analysis, 2016, 44 : 655 - 672
  • [37] An Equivalence Between the Dirichlet and the Neumann Problem for the Laplace Operator
    Beznea, Lucian
    Pascu, Mihai N.
    Pascu, Nicolae R.
    POTENTIAL ANALYSIS, 2016, 44 (04) : 655 - 672
  • [38] Solution of the Neumann problem for the Laplace equation
    Dagmar Medková
    Czechoslovak Mathematical Journal, 1998, 48 : 763 - 784
  • [39] Solution of the Neumann problem for the Laplace equation
    Medková, D
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (04) : 763 - 784
  • [40] On a generalization of the Neumann problem for the Laplace equation
    Turmetov, B.
    Nazarova, K.
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (01) : 169 - 177