Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact

被引:0
|
作者
Nikita Kornilov
Alexander Gasnikov
Pavel Dvurechensky
Darina Dvinskikh
机构
[1] Moscow Institute of Physics and Technology,
[2] Weierstrass Institute for Applied Analysis and Stochastics,undefined
[3] HSE University,undefined
[4] Skoltech,undefined
[5] ISP RAS Research Center for Trusted Artificial Intelligence,undefined
来源
Computational Management Science | 2023年 / 20卷
关键词
Zeroth-order optimization; Derivative-free optimization; Stochastic optimization; Non-smooth problems; Heavy tails; Gradient clipping; Stochastic mirror descent;
D O I
暂无
中图分类号
学科分类号
摘要
We present two easy-to-implement gradient-free/zeroth-order methods to optimize a stochastic non-smooth function accessible only via a black-box. The methods are built upon efficient first-order methods in the heavy-tailed case, i.e., when the gradient noise has infinite variance but bounded (1+κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\kappa)$$\end{document}-th moment for some κ∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \in(0,1]$$\end{document}. The first algorithm is based on the stochastic mirror descent with a particular class of uniformly convex mirror maps which is robust to heavy-tailed noise. The second algorithm is based on the stochastic mirror descent and gradient clipping technique. Additionally, for the objective functions satisfying the r-growth condition, faster algorithms are proposed based on these methods and the restart technique.
引用
收藏
相关论文
共 50 条
  • [41] Gradient Methods for Non-convex Optimization
    Prateek Jain
    Journal of the Indian Institute of Science, 2019, 99 : 247 - 256
  • [42] KKT OPTIMALITY CONDITIONS IN NON-SMOOTH, NON-CONVEX OPTIMIZATION
    Sisarat, Nithirat
    Wangkeeree, Rabian
    Lee, Gue Myung
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (08) : 1319 - 1329
  • [43] Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
    Chen, Ruijuan
    Tang, Xiaoquan
    Li, Xiuting
    FRACTAL AND FRACTIONAL, 2022, 6 (12)
  • [44] Discussion on: "An adaptive gradient law with projection for non-smooth convex boundaries"
    Back, Juhoon
    Shim, Hyungbo
    EUROPEAN JOURNAL OF CONTROL, 2006, 12 (06) : 620 - 621
  • [45] Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
    Tan, Yan Shuo
    Vershynin, Roman
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [46] On variance reduction for stochastic smooth convex optimization with multiplicative noise
    Alejandro Jofré
    Philip Thompson
    Mathematical Programming, 2019, 174 : 253 - 292
  • [47] On variance reduction for stochastic smooth convex optimization with multiplicative noise
    Jofre, Alejandro
    Thompson, Philip
    MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) : 253 - 292
  • [48] Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
    Xu, Yi
    Qi, Qi
    Lin, Qihang
    Jin, Rong
    Yang, Tianbao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [49] A gradient-free distributed optimization method for convex sum of nonconvex cost functions
    Pang, Yipeng
    Hu, Guoqiang
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (14) : 8086 - 8101
  • [50] A method to construct a quasi-normal cone for non-convex and non-smooth set and its applications to non-convex and non-smooth optimization
    Li, Hongwei
    Zhou, Dequn
    Liu, Qinghuai
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1585 - +