Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact

被引:0
|
作者
Nikita Kornilov
Alexander Gasnikov
Pavel Dvurechensky
Darina Dvinskikh
机构
[1] Moscow Institute of Physics and Technology,
[2] Weierstrass Institute for Applied Analysis and Stochastics,undefined
[3] HSE University,undefined
[4] Skoltech,undefined
[5] ISP RAS Research Center for Trusted Artificial Intelligence,undefined
来源
Computational Management Science | 2023年 / 20卷
关键词
Zeroth-order optimization; Derivative-free optimization; Stochastic optimization; Non-smooth problems; Heavy tails; Gradient clipping; Stochastic mirror descent;
D O I
暂无
中图分类号
学科分类号
摘要
We present two easy-to-implement gradient-free/zeroth-order methods to optimize a stochastic non-smooth function accessible only via a black-box. The methods are built upon efficient first-order methods in the heavy-tailed case, i.e., when the gradient noise has infinite variance but bounded (1+κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\kappa)$$\end{document}-th moment for some κ∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \in(0,1]$$\end{document}. The first algorithm is based on the stochastic mirror descent with a particular class of uniformly convex mirror maps which is robust to heavy-tailed noise. The second algorithm is based on the stochastic mirror descent and gradient clipping technique. Additionally, for the objective functions satisfying the r-growth condition, faster algorithms are proposed based on these methods and the restart technique.
引用
收藏
相关论文
共 50 条
  • [31] Convergence of Constant Step Stochastic Gradient Descent for Non-Smooth Non-Convex Functions
    Bianchi, Pascal
    Hachem, Walid
    Schechtman, Sholom
    SET-VALUED AND VARIATIONAL ANALYSIS, 2022, 30 (03) : 1117 - 1147
  • [32] The Spiral Discovery Network as an Evolutionary Model for Gradient-Free Non-Convex Optimization
    Csapo, Adam B.
    2018 9TH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS (COGINFOCOM), 2018, : 347 - 352
  • [33] Complexity of Highly Parallel Non-Smooth Convex Optimization
    Bubeck, Sebastien
    Jiang, Qijia
    Lee, Yin Tat
    Li, Yuanzhi
    Sidford, Aaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [34] An adaptive gradient law with projection for non-smooth convex boundaries
    Kuhnen, K.
    Krejci, P.
    EUROPEAN JOURNAL OF CONTROL, 2006, 12 (06) : 606 - 619
  • [35] Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient Oracle Complexity
    Dong, Sally
    Jiang, Haotian
    Lee, Yin Tat
    Padmanabhan, Swati
    Ye, Guanghao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [36] Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems
    Puchkin, Nikita
    Gorbunov, Eduard
    Kutuzov, Nikolay
    Gasnikov, Alexander
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [37] Clipped Stochastic Methods for Variational Inequalities with Heavy-Tailed Noise
    Gorbunov, Eduard
    Danilova, Marina
    Dobre, David
    Dvurechensky, Pavel
    Gasnikov, Alexander
    Gidel, Gauthier
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [38] Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems
    Xu, Yi
    Jin, Rong
    Yang, Tianbao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [39] ON A NEW SMOOTHING TECHNIQUE FOR NON-SMOOTH, NON-CONVEX OPTIMIZATION
    Yilmaz, Nurullah
    Sahiner, Ahmet
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (03): : 317 - 330
  • [40] Gradient Methods for Non-convex Optimization
    Jain, Prateek
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (02) : 247 - 256