Integer-fractional decomposition and stability analysis of fractional-order nonlinear dynamic systems using homotopy singular perturbation method

被引:0
|
作者
Mahnaz Abolvafaei
Soheil Ganjefar
机构
[1] Bu-Ali Sina University,Department of Electrical Engineering, Faculty of Engineering
[2] Iran University of Science and Technology,School of Electrical Engineering
关键词
Integer–fractional-order system; Singular perturbation method; Homotopy perturbation method; Stability analysis; Model simplification; Convergence analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Achieving a simplified model is a major issue in the field of fractional-order nonlinear systems, especially large-scale systems. So that in addition to simplifying the model, the outstanding features of the fractional-order modeling, such as memory feature, are preserved. This paper presented the homotopy singular perturbation method (HSPM) to reduce the complexity of the model and use the advantages of both models of the fractional order and the integer order. This method is a combination of the fractional-order singular perturbation method (FOSPM) and the homotopy perturbation method (HPM). Firstly, the FOSPM is developed for fractional-order nonlinear systems; then, a modification of the HPM is proposed. Finally, the HSPM is presented using a combination of these two methods. fractional-order nonlinear systems can be divided into two lower-order subsystems such as nonlinear or linear integer-order subsystem and linear fractional-order subsystem using this hybrid method. Convergence analysis of tracking error to zero is theoretically presented, and the effectiveness of the proposed method is also evaluated with two examples. Next, the number and location of equilibrium points are compared between the original system and the subsystems obtained from the proposed method. In the end, we show that the stability of fractional-order nonlinear system can be determined by investigating the stability of the subsystems using Theorem 3 and Lemma 2.
引用
收藏
页码:517 / 542
页数:25
相关论文
共 50 条
  • [21] Fractional-Order Sliding Mode Control Method for a Class of Integer-Order Nonlinear Systems
    Qing, Wenjie
    Pan, Binfeng
    Hou, Yueyang
    Lu, Shan
    Zhang, Wenjing
    AEROSPACE, 2022, 9 (10)
  • [22] Stability and stabilization of a class of fractional-order nonlinear systems for
    Huang, Sunhua
    Wang, Bin
    NONLINEAR DYNAMICS, 2017, 88 (02) : 973 - 984
  • [23] STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    Sioud, Khaled
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1309 - 1321
  • [24] A NOTE ON THE LYAPUNOV STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS
    Dadras, Sara
    Dadras, Soodeh
    Malek, Hadi
    Chen, YangQuan
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 9, 2017,
  • [25] Sufficient stability condition for fractional-order nonlinear systems
    Keyong Shao
    Lei Zuo
    Journal of Mechanical Science and Technology, 2017, 31 : 3531 - 3537
  • [26] Partial practical stability for fractional-order nonlinear systems
    Ben Makhlouf, Abdellatif
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (09) : 5135 - 5148
  • [27] Sufficient stability condition for fractional-order nonlinear systems
    Shao, Keyong
    Zuo, Lei
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (07) : 3531 - 3537
  • [28] Contraction analysis for fractional-order nonlinear systems
    Gonzalez-Olvera, Marcos A.
    Tang, Yu
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 255 - 263
  • [29] Practical stability of fractional-order nonlinear fuzzy systems
    Rhaima, Mohamed
    Mchiri, Lassaad
    Taieb, Nizar Hadj
    Hammami, Mohamed Ali
    Ben Makhlouf, Abdellatif
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2023, 52 (07) : 864 - 875
  • [30] Stability of Nonlinear Fractional-Order Time Varying Systems
    Huang, Sunhua
    Zhang, Runfan
    Chen, Diyi
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (03):