Practical stability of fractional-order nonlinear fuzzy systems

被引:2
|
作者
Rhaima, Mohamed [1 ]
Mchiri, Lassaad [2 ]
Taieb, Nizar Hadj [3 ]
Hammami, Mohamed Ali [3 ]
Ben Makhlouf, Abdellatif [3 ]
机构
[1] King Saud Univ, Coll Sci, Dept Stat & Operat Res, Riyadh, Saudi Arabia
[2] Univ Evry Val Essonne, Dept Math, ENSIIE, Evry Courcouronnes, France
[3] Sfax Univ, Fac Sci, Dept Math, Sfax, Tunisia
关键词
Practical stability; Takagi-Sugeno fractional-order system; Lyapunov function; STABILIZATION; FEEDBACK; DESIGN;
D O I
10.1080/03081079.2023.2219825
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present a practical Mittag-Leffler stability for a new class of fractional-order nonlinear Takagi-Sugeno fuzzy uncertain systems. Based on fractional-order Lyapunov stability theory and the parallel distributed compensation (PDC) controller techniques, we show the convergence of the solutions of the closed-loop considered system toward a neighborhood of the origin. Furthermore, a numerical example is given to show the applicability of the main result.
引用
收藏
页码:864 / 875
页数:12
相关论文
共 50 条
  • [1] Partial practical stability for fractional-order nonlinear systems
    Ben Makhlouf, Abdellatif
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (09) : 5135 - 5148
  • [2] Stability of a Class of Fractional-Order Nonlinear Systems
    Li, Tianzeng
    Wang, Yu
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [3] Stability and stabilization of a class of fractional-order nonlinear systems for
    Huang, Sunhua
    Wang, Bin
    [J]. NONLINEAR DYNAMICS, 2017, 88 (02) : 973 - 984
  • [4] Stability Analysis of Fractional-Order Nonlinear Systems with Delay
    Wang, Yu
    Li, Tianzeng
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [5] Sufficient stability condition for fractional-order nonlinear systems
    Shao, Keyong
    Zuo, Lei
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (07) : 3531 - 3537
  • [6] Stability Analysis of a Class of Nonlinear Fractional-Order Systems
    Wen, Xiang-Jun
    Wu, Zheng-Mao
    Lu, Jun-Guo
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008, 55 (11) : 1178 - 1182
  • [7] Stability analysis of conformable fractional-order nonlinear systems
    Souahi, Abdourazek
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (06): : 1265 - 1274
  • [8] Sufficient stability condition for fractional-order nonlinear systems
    Keyong Shao
    Lei Zuo
    [J]. Journal of Mechanical Science and Technology, 2017, 31 : 3531 - 3537
  • [9] Stability analysis on a class of nonlinear fractional-order systems
    Wang, Zhiliang
    Yang, Dongsheng
    Zhang, Huaguang
    [J]. NONLINEAR DYNAMICS, 2016, 86 (02) : 1023 - 1033
  • [10] STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    Sioud, Khaled
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1309 - 1321