Manifold;
Lyapunov Exponent;
Subharmonic Function;
Lyapunov Spectrum;
Base Dynamic;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Consider the Banach manifold of real analytic linear cocycles with values in the general linear group of any dimension and base dynamics given by a Diophantine translation on the circle. We prove a precise higher dimensional Avalanche Principle and use it in an inductive scheme to show that the Lyapunov spectrum blocks associated to a gap pattern in the Lyapunov spectrum of such a cocycle are locally Hölder continuous. Moreover, we show that all Lyapunov exponents are continuous everywhere in this Banach manifold, irrespective of any gap pattern in their spectra. These results also hold for Diophantine translations on higher dimensional tori, albeit with a loss in the modulus of continuity of the Lyapunov spectrum blocks.
机构:
Univ Fed Rio Grande do Sul, Dept Matemat, Av Bento Goncalves 9500, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Dept Matemat, Av Bento Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil
Backes, Lucas
Poletti, Mauricio
论文数: 0引用数: 0
h-index: 0
机构:
IMPA Inst Nacl Matemat Pura Aplicada, Estrada D Castorina 110, BR-22460320 Rio De Janeiro, RJ, BrazilUniv Fed Rio Grande do Sul, Dept Matemat, Av Bento Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil
机构:
CNRS, UMR 7586, Inst Math Jussieu, F-75013 Paris, France
IMPA, BR-22460320 Rio De Janeiro, BrazilCNRS, UMR 7586, Inst Math Jussieu, F-75013 Paris, France
机构:
IST Austria, A-3400 Klosterneuburg, Austria
Pontificia Univ Catolica, Fac Matemat, Santiago, ChileIST Austria, A-3400 Klosterneuburg, Austria
Sadel, Christian
Xu, Disheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Diderot, UPMC Univ Paris 06, UMR 7586,CNRS,Sorbonne Paris Cite, Sorbonne Univ,Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, FranceIST Austria, A-3400 Klosterneuburg, Austria