Lyapunov exponents of orthogonal-plus-normal cocycles

被引:0
|
作者
Bednarski, Sam [1 ]
Quas, Anthony [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Lyapunov exponent; multiplicative ergodic theory; expansion; MULTIPLICATIVE ERGODIC THEOREM; ISOLATED SPECTRUM; OPERATOR; PROOF;
D O I
10.1088/1361-6544/adac9a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider products of matrices of the form An=On+epsilon Nn where (On)n >= 1 is a sequence of d x d orthogonal matrices, Nn has independent standard normal entries and where the (Nn)n >= 1 are mutually independent. We study the Lyapunov exponents of the cocycle as a function of epsilon, giving an exact expression for the jth Lyapunov exponent in terms of the Gram-Schmidt orthogonalization of I+epsilon N. Further, we study the asymptotics of these exponents, showing that lambda j=(d-2j)epsilon 2/2+O(epsilon 4|log epsilon|4).
引用
收藏
页数:17
相关论文
共 50 条