Entropy Spectrum of Lyapunov Exponents for Typical Cocycles

被引:1
|
作者
Mohammadpour, Reza [1 ]
机构
[1] Uppsala Univ, Dept Math, Box 480, SE-75106 Uppsala, Sweden
关键词
Lyapunov exponents; Multifractal formalism; Topological entropy; Typical cocycles; MULTIFRACTAL ANALYSIS; DIMENSION; PRODUCTS; DYNAMICS;
D O I
10.1007/s10884-024-10379-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the size of the level sets of all Lyapunov exponents. For typical cocycles, we establish a variational relation between the topological entropy of the level sets of Lyapunov exponents and the topological pressure of the generalized singular value function.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles
    L. J. Díaz
    K. Gelfert
    M. Rams
    Communications in Mathematical Physics, 2019, 367 : 351 - 416
  • [2] Entropy Spectrum of Lyapunov Exponents for Nonhyperbolic Step Skew-Products and Elliptic Cocycles
    Diaz, L. J.
    Gelfert, K.
    Rams, M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 367 (02) : 351 - 416
  • [3] Entropy of Lyapunov maximizing measures of SL(2,ℝ) typical cocycles
    Mohammadpour, Reza
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2025,
  • [4] Continuity of the Lyapunov Exponents for Quasiperiodic Cocycles
    Pedro Duarte
    Silvius Klein
    Communications in Mathematical Physics, 2014, 332 : 1113 - 1166
  • [5] Continuity of the Lyapunov Exponents for Quasiperiodic Cocycles
    Duarte, Pedro
    Klein, Silvius
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (03) : 1113 - 1166
  • [6] Nonexistence of Lyapunov exponents for matrix cocycles
    Tian, Xueting
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (01): : 493 - 502
  • [7] Lyapunov Exponents for Generalized Szegő Cocycles
    Fang, Licheng
    Wang, Fengpeng
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [8] PROPERTIES OF LYAPUNOV EXPONENTS FOR QUASIPERODIC COCYCLES WITH SINGULARITIES
    Tao, Kai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [9] CONTINUITY OF LYAPUNOV EXPONENTS FOR COCYCLES WITH INVARIANT HOLONOMIES
    Backes, Lucas
    Brown, Aaron
    Butler, Clark
    JOURNAL OF MODERN DYNAMICS, 2018, 12 : 223 - 260
  • [10] Positive lyapunov exponents for quasiperiodic Szego cocycles
    Zhang, Zhenghe
    NONLINEARITY, 2012, 25 (06) : 1771 - 1797