Study exponential and polynomial stability of Timoshenko beam with boundary dissipative conditions of fractional derivative type

被引:0
|
作者
C. Messikh
S. Labidi
机构
[1] Badji Mokhtar University,Department of Mathematics
关键词
35R11; 35B40; 35C20; 35A01; 93D15; 47B44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Timoshenko beam with only one dynamic control boundary condition of fractional derivative type. We show that the system is not uniformly stable by a spectrum method but it is polynomial stable using the frequency domain approach and Borichev and Tomilov’s result. These results improve some recent results in the literature.
引用
收藏
页码:673 / 706
页数:33
相关论文
共 50 条
  • [31] The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type
    Achouri, Zineb
    Amroun, Nour Eddine
    Benaissa, Abbes
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 3837 - 3854
  • [32] Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type
    O. P. V. Villagran
    C. A. Nonato
    C. A. Raposo
    A. J. A. Ramos
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 803 - 831
  • [33] Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type
    Villagran, O. P. V.
    Nonato, C. A.
    Raposo, C. A.
    Ramos, A. J. A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 803 - 831
  • [34] Improvement on the polynomial stability for a Timoshenko system with type III thermoelasticity
    Jorge Silva, Marcio A.
    Pinheiro, Sandro B.
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 95 - 100
  • [35] Stability for a boundary contact problem in thermoelastic Timoshenko’s beam
    J. E. Munoz Rivera
    C. A. da Costa Baldez
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [36] Free Vibration of Elastic Timoshenko Beam on Fractional Derivative Winkler Viscoelastic Foundation
    Yan, Qifang
    Su, Ziping
    ADVANCES IN CIVIL ENGINEERING AND ARCHITECTURE INNOVATION, PTS 1-6, 2012, 368-373 : 1034 - +
  • [37] Stability for a boundary contact problem in thermoelastic Timoshenko's beam
    Rivera, J. E. Munoz
    da Costa Baldez, C. A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [38] Decay of the timoshenko beam with thermal effect and memory boundary conditions
    M. Aouadi
    A. Soufyane
    Journal of Dynamical and Control Systems, 2013, 19 : 33 - 46
  • [39] Decay of the timoshenko beam with thermal effect and memory boundary conditions
    Aouadi, M.
    Soufyane, A.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2013, 19 (01) : 33 - 46
  • [40] Exponential stability of Hopfield neural networks with conformable fractional derivative
    Kutahyalioglu, Aysen
    Karakoc, Fatma
    NEUROCOMPUTING, 2021, 456 : 263 - 267