On conformal minimal immersions with constant curvature from two-spheres into the complex hyperquadrics

被引:0
|
作者
Hong Li
Xiaoxiang Jiao
机构
[1] Yunnan Normal University,Department of Mathematics
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
Conformal minimal surface; Isotropy order; Constant curvature; Linearly full; 53C42; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, firstly we study the geometry of conformal minimal two-spheres immersed in the complex hyperquadric Qn-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n-2}$$\end{document}. Then we classify the linearly full irreducible conformal minimal immersions with constant curvature from S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^2$$\end{document} to Qn-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n-2}$$\end{document} (n⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 7$$\end{document}) of isotropy order r=n-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=n-6$$\end{document} under some conditions, which shows that all such immersions can be expressed by Veronese surfaces in CPn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}P^{n-1}$$\end{document} only under some conditions.
引用
收藏
页码:980 / 995
页数:15
相关论文
共 50 条
  • [41] Explicit construction of harmonic two-spheres into the complex Grassmannian
    Ferreira, Maria Joao
    Simoes, Bruno Ascenso
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (1-2) : 151 - 174
  • [42] Explicit construction of harmonic two-spheres into the complex Grassmannian
    Maria João Ferreira
    Bruno Ascenso Simões
    Mathematische Zeitschrift, 2012, 272 : 151 - 174
  • [43] Classification of homogeneous holomorphic two-spheres in complex Grassmann manifolds
    Fei, Jie
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 62 : 1 - 38
  • [44] MINIMAL 2-SPHERES WITH CONSTANT CURVATURE IN PN(C)
    BANDO, S
    OHNITA, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (03) : 477 - 487
  • [45] Holomorphic two-spheres in the complex Grassmann manifold G(k, n)
    Jiao, Xiaoxiang
    Zhong, Xu
    Xu, Xiaowei
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (03): : 399 - 409
  • [46] Holomorphic two-spheres in the complex Grassmann manifold G(k, n)
    XIAOXIANG JIAO
    X U ZHONG
    XIAOWEI XU
    Proceedings - Mathematical Sciences, 2012, 122 : 399 - 409
  • [47] Hawking mass and local rigidity of minimal two-spheres in three-manifolds
    Maximo, Davi
    Nunes, Ivaldo
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2013, 21 (02) : 409 - 433
  • [48] On minimal surfaces of constant curvature in two-dimensional complex space form
    Kenmotsu, K
    Masuda, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 523 : 69 - 101
  • [49] Holomorphic two-spheres in complex Grassmann manifold G(2, 4)
    Xiaowei Xu
    Xiaoxiang Jiao
    Proceedings Mathematical Sciences, 2008, 118 : 381 - 388
  • [50] Pinched Constantly Curved Holomorphic Two-Spheres in the Complex Grassmann Manifolds
    Fei, Jie
    Wang, Jun
    RESULTS IN MATHEMATICS, 2024, 79 (05)