On conformal minimal immersions with constant curvature from two-spheres into the complex hyperquadrics

被引:0
|
作者
Hong Li
Xiaoxiang Jiao
机构
[1] Yunnan Normal University,Department of Mathematics
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
Conformal minimal surface; Isotropy order; Constant curvature; Linearly full; 53C42; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, firstly we study the geometry of conformal minimal two-spheres immersed in the complex hyperquadric Qn-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n-2}$$\end{document}. Then we classify the linearly full irreducible conformal minimal immersions with constant curvature from S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^2$$\end{document} to Qn-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n-2}$$\end{document} (n⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 7$$\end{document}) of isotropy order r=n-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=n-6$$\end{document} under some conditions, which shows that all such immersions can be expressed by Veronese surfaces in CPn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}P^{n-1}$$\end{document} only under some conditions.
引用
收藏
页码:980 / 995
页数:15
相关论文
共 50 条
  • [31] Classification of conformal minimal immersions of constant curvature from S2 to Q3
    Li, Mingyan
    Jiao, Xiaoxiang
    He, Ling
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (02) : 863 - 883
  • [32] Classification of conformal minimal immersions of constant curvature from S2 to HP2
    He, Ling
    Jiao, Xiaoxiang
    MATHEMATISCHE ANNALEN, 2014, 359 (3-4) : 663 - 694
  • [33] A characterization of homogeneous totally real minimal two-spheres in a complex hyperquadric
    Fei, Jie
    Wang, Jun
    Xu, Xiaowei
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (01)
  • [34] Minimal two-spheres in G(2, 4)
    Xiaoxiang Jiao
    Jiagui Peng
    Frontiers of Mathematics in China, 2010, 5 : 297 - 310
  • [35] Minimal two-spheres in G(2,4)
    Jiao, Xiaoxiang
    Peng, Jiagui
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (02) : 297 - 310
  • [36] Structure of minimal 2-spheres of constant curvature in the complex hyperquadric
    Chi, Quo-Shin
    Xie, Zhenxiao
    Xu, Yan
    ADVANCES IN MATHEMATICS, 2021, 391
  • [37] On minimal two-spheres immersed in complex Grassmann manifolds with parallel second fundamental form
    Jiao, Xiaoxiang
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (3-4): : 381 - 401
  • [38] On minimal two-spheres immersed in complex Grassmann manifolds with parallel second fundamental form
    Xiaoxiang Jiao
    Monatshefte für Mathematik, 2012, 168 : 381 - 401
  • [39] Classification of minimal homogeneous two-spheres in the complex Grassmann manifold G(2, n)
    Peng, Chiakuei
    Xu, Xiaowei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (02): : 374 - 399
  • [40] MINIMAL HYPERSURFACES OF SPHERES WITH CONSTANT SCALAR CURVATURE
    PENG, CK
    TERNG, CL
    ANNALS OF MATHEMATICS STUDIES, 1983, (103): : 177 - 198