On conformal minimal immersions with constant curvature from two-spheres into the complex hyperquadrics

被引:0
|
作者
Hong Li
Xiaoxiang Jiao
机构
[1] Yunnan Normal University,Department of Mathematics
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
Conformal minimal surface; Isotropy order; Constant curvature; Linearly full; 53C42; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, firstly we study the geometry of conformal minimal two-spheres immersed in the complex hyperquadric Qn-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n-2}$$\end{document}. Then we classify the linearly full irreducible conformal minimal immersions with constant curvature from S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^2$$\end{document} to Qn-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n-2}$$\end{document} (n⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 7$$\end{document}) of isotropy order r=n-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=n-6$$\end{document} under some conditions, which shows that all such immersions can be expressed by Veronese surfaces in CPn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}P^{n-1}$$\end{document} only under some conditions.
引用
收藏
页码:980 / 995
页数:15
相关论文
共 50 条
  • [1] On conformal minimal immersions with constant curvature from two-spheres into the complex hyperquadrics
    Li, Hong
    Jiao, Xiaoxiang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04): : 980 - 995
  • [2] Minimal two-spheres with constant curvature in the complex Grassmannians
    Peng, Chiakuei
    Xu, Xiaowei
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 202 (01) : 1 - 20
  • [3] Minimal two-spheres with constant curvature in the complex hyperquadric
    Peng, Chiakuei
    Wang, Jun
    Xu, Xiaowei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (03): : 453 - 476
  • [4] Minimal two-spheres with constant curvature in the complex Grassmannians
    Chiakuei Peng
    Xiaowei Xu
    Israel Journal of Mathematics, 2014, 202 : 1 - 20
  • [5] Conformal minimal two-spheres with constant Gauss curvature in U(3)
    Jiao, XX
    Peng, JG
    CHINESE SCIENCE BULLETIN, 1998, 43 (12): : 994 - 997
  • [6] Conformal minimal two-spheres with constant Gauss curvature in U(3)
    JIAO Xiaoxiang and PENG Jiagui Department of Mathematics
    ChineseScienceBulletin, 1998, (12) : 994 - 997
  • [7] Minimal two-spheres with constant curvature in n
    Zhang, Shaoteng
    Jiao, Xiaoxiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (03) : 901 - 923
  • [8] Minimal two-spheres with constant curvature in ℍPn
    Shaoteng Zhang
    Xiaoxiang Jiao
    Frontiers of Mathematics in China, 2021, 16 : 901 - 923
  • [9] On Conformal Minimal Immersions of Two-Spheres in a Complex Hyperquadric with Parallel Second Fundamental Form
    Jiao, Xiaoxiang
    Li, Mingyan
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 185 - 205
  • [10] On Conformal Minimal Immersions of Two-Spheres in a Complex Hyperquadric with Parallel Second Fundamental Form
    Xiaoxiang Jiao
    Mingyan Li
    The Journal of Geometric Analysis, 2016, 26 : 185 - 205