Strict Mittag-Leffler Conditions and Gorenstein Modules

被引:0
|
作者
Yanjiong Yang
Xiaoguang Yan
Xiaosheng Zhu
机构
[1] Nanjing University,Department of Mathematics
[2] Nanjing Xiaozhuang University,School of Mathematics and Information Technology
[3] Taizhou University,Department of Mathematics
来源
关键词
Mittag-Leffler condition; Gorenstein module; Tilting module; Cotorsion pair; Direct limit; 13D02; 13D07; 13E05; 16D10; 16D80; 16D90;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, firstly, we characterize some rings by strict Mittag-Leffler conditions. Then, we investigate when Gorenstein projective modules are Gorenstein flat by employing tilting modules and cotorsion pairs. Finally, we study the direct limits of Gorenstein projective modules.
引用
收藏
页码:1451 / 1466
页数:15
相关论文
共 50 条
  • [41] ON FRACTIONAL MITTAG-LEFFLER OPERATORS
    Ansari, Alireza
    Darani, Mohammadreza Ahmadi
    Moradi, Mohammad
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (01) : 119 - 131
  • [42] Mittag-Leffler functions in superstatistics
    dos Santos, Maike A. F.
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [43] DESCENT OF RESTRICTED FLAT MITTAG-LEFFLER MODULES AND GENERALIZED VECTOR BUNDLES
    Estrada, Sergio
    Asensio, Pedro Guil
    Trlifaj, Jan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (09) : 2973 - 2981
  • [44] Mittag-Leffler coherent states
    Sixdeniers, JM
    Penson, KA
    Solomon, AI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (43): : 7543 - 7563
  • [45] The Poincare - Mittag-Leffler relationship
    Nabonnand, P
    MATHEMATICAL INTELLIGENCER, 1999, 21 (02): : 58 - 64
  • [46] STAR MITTAG-LEFFLER FUNCTION
    Yoshioka, Akira
    Takeuchi, Tsukasa
    Yoshimi, Naoko
    PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 301 - 307
  • [47] The calculation of the Mittag-Leffler function
    Saenko, V. V.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (07) : 1367 - 1394
  • [48] DISCRETE MITTAG-LEFFLER DISTRIBUTIONS
    PILLAI, RN
    JAYAKUMAR, K
    STATISTICS & PROBABILITY LETTERS, 1995, 23 (03) : 271 - 274
  • [49] The Poincaré—Mittag-Leffler Relationship
    Philippe Nabonnand
    The Mathematical Intelligencer, 1999, 21 : 58 - 64
  • [50] OPTIMALITY CONDITIONS INVOLVING THE MITTAG-LEFFLER TEMPERED FRACTIONAL DERIVATIVE
    Almeida, Ricardo
    Luisa Morgado, M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (03): : 519 - 534