Two-Body Correlations and the Superfluid Fraction for Nonuniform Systems

被引:0
|
作者
W. M. Saslow
D. E. Galli
L. Reatto
机构
[1] Texas A&M University,Department of Physics
[2] Università degli Studi di Milano,Dipartimento di Fisica
来源
关键词
Superfluidity; Supersolid; Correlation functions; 67.80.-s; 67.90.+z; 67.57.De;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the one-body phase function upper bound on the superfluid fraction fs in a periodic solid (a spatially ordered supersolid) to include two-body phase correlations. The one-body current density is no longer proportional to the gradient of the one-body phase times the one-body density, but rather it becomes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{j}(\vec{r}_{1})=\rho_{1}(\vec{r}_{1})\frac{\hbar}{m}\vec{\nabla }_{1}\phi_{1}(\vec{r}_{1})+\frac{1}{N}\int d\vec{r}_{2}\rho_{2}(\vec{r}_{1},\vec{r}_{2})\frac{\hbar }{m}\vec{\nabla}_{1}\phi_{2}(\vec{r}_{1},\vec{r}_{2})$\end{document} . This expression therefore depends also on two-body correlation functions. The equations that simultaneously determine the one-body and two-body phase functions require a knowledge of one-, two-, and three-body correlation functions. The approach can also be extended to disordered solids. Fluids, with two-body densities and two-body phase functions that are translationally invariant, cannot take advantage of this additional degree of freedom to lower their energy.
引用
收藏
页码:53 / 63
页数:10
相关论文
共 50 条
  • [41] Two-body exceptional points in open dissipative systems
    Ding, Peize
    Yi, Wei
    CHINESE PHYSICS B, 2022, 31 (01)
  • [42] Stabilization method in two-body systems with core excitations
    Lay, J. A.
    Arias, J. M.
    Gomez-Camacho, J.
    Moro, A. M.
    BEAUTY IN PHYSICS: THEORY AND EXPERIMENT: IN HONOR OF FRANCESCO LACHELLO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2012, 1488 : 436 - 440
  • [43] Confinement of two-body systems and calculations in d dimensions
    Garrido, E.
    Jensen, A. S.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (02):
  • [44] Universal Low Energy Features of Two-Body Systems
    A. Calle Cordón
    E. Ruiz Arriola
    Few-Body Systems, 2011, 50 : 303 - 305
  • [45] Equivalent linear two-body equations for many-body systems
    Zubarev, Alexander L.
    Kim, Yeong E.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263 (1-2): : 33 - 37
  • [46] A ubiquitous unifying degeneracy in two-body microlensing systems
    Zhang, Keming
    Gaudi, B. Scott
    Bloom, Joshua S.
    NATURE ASTRONOMY, 2022, 6 (07) : 782 - +
  • [47] Equivalent linear two-body equations for many-body systems
    Zubarev, AL
    Kim, YE
    PHYSICS LETTERS A, 1999, 263 (1-2) : 33 - 37
  • [48] The two-body problem
    DeFrancesco, L
    Wilkinson, D
    SCIENTIST, 1999, 13 (08): : 21 - 23
  • [49] Two-body solution
    Rovner, SL
    CHEMICAL & ENGINEERING NEWS, 2006, 84 (19) : 35 - 38
  • [50] Two-body solution
    Virginia Gewin
    Nature, 2008, 455 (7212) : 562 - 562