Two-Body Correlations and the Superfluid Fraction for Nonuniform Systems

被引:0
|
作者
W. M. Saslow
D. E. Galli
L. Reatto
机构
[1] Texas A&M University,Department of Physics
[2] Università degli Studi di Milano,Dipartimento di Fisica
来源
关键词
Superfluidity; Supersolid; Correlation functions; 67.80.-s; 67.90.+z; 67.57.De;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the one-body phase function upper bound on the superfluid fraction fs in a periodic solid (a spatially ordered supersolid) to include two-body phase correlations. The one-body current density is no longer proportional to the gradient of the one-body phase times the one-body density, but rather it becomes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec{j}(\vec{r}_{1})=\rho_{1}(\vec{r}_{1})\frac{\hbar}{m}\vec{\nabla }_{1}\phi_{1}(\vec{r}_{1})+\frac{1}{N}\int d\vec{r}_{2}\rho_{2}(\vec{r}_{1},\vec{r}_{2})\frac{\hbar }{m}\vec{\nabla}_{1}\phi_{2}(\vec{r}_{1},\vec{r}_{2})$\end{document} . This expression therefore depends also on two-body correlation functions. The equations that simultaneously determine the one-body and two-body phase functions require a knowledge of one-, two-, and three-body correlation functions. The approach can also be extended to disordered solids. Fluids, with two-body densities and two-body phase functions that are translationally invariant, cannot take advantage of this additional degree of freedom to lower their energy.
引用
收藏
页码:53 / 63
页数:10
相关论文
共 50 条
  • [31] General spin analysis from angular correlations in two-body decays
    Choi, Seong Youl
    Jeong, Jae Hoon
    Song, Ji Ho
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):
  • [32] Pairing correlations and eigenvalues of two-body density matrix in atomic nuclei
    Sambataro, Michelangelo
    Sandulescu, Nicolae
    ANNALS OF PHYSICS, 2020, 413
  • [33] Hybrid model for Rydberg gases including exact two-body correlations
    Heeg, Kilian P.
    Gaerttner, Martin
    Evers, Joerg
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [34] General spin analysis from angular correlations in two-body decays
    Seong Youl Choi
    Jae Hoon Jeong
    Ji Ho Song
    The European Physical Journal Plus, 135
  • [35] Tan’s two-body contact across the superfluid transition of a planar Bose gas
    Y.-Q. Zou
    B. Bakkali-Hassani
    C. Maury
    É. Le Cerf
    S. Nascimbene
    J. Dalibard
    J. Beugnon
    Nature Communications, 12
  • [36] Tan's two-body contact across the superfluid transition of a planar Bose gas
    Zou, Y-Q
    Bakkali-Hassani, B.
    Maury, C.
    Le Cerf, E.
    Nascimbene, S.
    Dalibard, J.
    Beugnon, J.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [37] A ubiquitous unifying degeneracy in two-body microlensing systems
    Keming Zhang
    B. Scott Gaudi
    Joshua S. Bloom
    Nature Astronomy, 2022, 6 : 782 - 787
  • [38] Universal Low Energy Features of Two-Body Systems
    Calle Cordon, A.
    Ruiz Arriola, E.
    FEW-BODY SYSTEMS, 2011, 50 (1-4) : 303 - 305
  • [39] Geometrical crossover in two-body systems in a magnetic field
    Cerkaski, M.
    Nazmitdinov, R. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (32)
  • [40] Two-body exceptional points in open dissipative systems
    丁霈泽
    易为
    Chinese Physics B, 2022, 31 (01) : 72 - 76