Orbits Homoclinic to Exponentially Small Periodic Orbits for a Class of Reversible Systems. Application to Water Waves

被引:0
|
作者
Eric Lombardi
机构
[1] Institut Non Linéaire de Nice¶1361 route des Lucioles¶F 06560 Valbonne,
[2] France,undefined
关键词
Vector Field; Periodic Orbit; Exponential Estimate; Small Periodic; Reversible System;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a class of reversible analytic vector fields is investigated near an equilibrium. For these vector fields, the part of the spectrum of the differential at the equilibrium which lies near the imaginary axis comes from the perturbation of a double eigenvalue 0 and two simple eigenvalues \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:227 / 304
页数:77
相关论文
共 50 条
  • [41] Families of periodic orbits in resonant reversible systems
    Silva Lima, Mauricio Firmino
    Teixeira, Marco Antonio
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (04): : 511 - 537
  • [42] Periodic Orbits and Homoclinic Orbits of Second-order Hamiltonian Systems with Mild Superquadratic Growth
    Zhang, Xiaofei
    Liu, Chungen
    Zhou, Benxing
    FRONTIERS OF MATHEMATICS, 2025,
  • [43] Homoclinic Orbits for Hamiltonian Systems with Small Forced Terms
    Chengyue LI
    Zhiwei XIAO
    Mengmeng WANG
    JournalofMathematicalResearchwithApplications, 2014, 34 (05) : 619 - 626
  • [45] Convergent analytic solutions for homoclinic orbits in reversible and non-reversible systems
    S. Roy Choudhury
    G. Gambino
    Nonlinear Dynamics, 2013, 73 : 1769 - 1782
  • [46] Convergent analytic solutions for homoclinic orbits in reversible and non-reversible systems
    Choudhury, S. Roy
    Gambino, G.
    NONLINEAR DYNAMICS, 2013, 73 (03) : 1769 - 1782
  • [47] Existence of Homoclinic Cycles and Periodic Orbits in a Class of Three-Dimensional Piecewise Affine Systems
    Wang, Lei
    Yang, Xiao-Song
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (02):
  • [48] GROUND STATE HOMOCLINIC ORBITS FOR A CLASS OF ASYMPTOTICALLY PERIODIC SECOND-ORDER HAMILTONIAN SYSTEMS
    Lv, Ying
    Xue, Yan-Fang
    Tang, Chun-Lei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1627 - 1652
  • [49] Homoclinic orbits for a class of first order nonperiodic Hamiltonian systems
    Zhang, Qingye
    Liu, Chungen
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 34 - 52