Orbits Homoclinic to Exponentially Small Periodic Orbits for a Class of Reversible Systems. Application to Water Waves

被引:0
|
作者
Eric Lombardi
机构
[1] Institut Non Linéaire de Nice¶1361 route des Lucioles¶F 06560 Valbonne,
[2] France,undefined
关键词
Vector Field; Periodic Orbit; Exponential Estimate; Small Periodic; Reversible System;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a class of reversible analytic vector fields is investigated near an equilibrium. For these vector fields, the part of the spectrum of the differential at the equilibrium which lies near the imaginary axis comes from the perturbation of a double eigenvalue 0 and two simple eigenvalues \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:227 / 304
页数:77
相关论文
共 50 条
  • [31] Fast homoclinic orbits for a class of damped vibration systems
    Wafa Selmi
    Mohsen Timoumi
    Ricerche di Matematica, 2022, 71 : 431 - 440
  • [32] MULTIPLE HOMOCLINIC ORBITS FOR A CLASS OF CONSERVATIVE-SYSTEMS
    AMBROSETTI, A
    ZELATI, VC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (08): : 601 - 604
  • [33] Fast homoclinic orbits for a class of damped vibration systems
    Selmi, Wafa
    Timoumi, Mohsen
    RICERCHE DI MATEMATICA, 2022, 71 (02) : 431 - 440
  • [34] Even homoclinic orbits for a class of damped vibration systems
    Fathi, Khelifi
    Timoumi, Mohsen
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (06): : 1111 - 1125
  • [35] TRANSVERSAL PERIODIC-TO-PERIODIC HOMOCLINIC ORBITS IN SINGULARLY PERTURBED SYSTEMS
    Battelli, Flaviano
    Palmer, Ken
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (02): : 367 - 387
  • [36] Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems
    Hiraoka, Yasuaki
    KYBERNETIKA, 2007, 43 (06) : 797 - 806
  • [37] Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics
    Champneys, AR
    PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (1-2) : 158 - 186
  • [38] Analytic and algebraic conditions for bifurcations of homoclinic orbits in reversible systems
    Yagasaki, Kazuyuki
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 229 - 234
  • [39] Bifurcation of homoclinic orbits to a saddle-center in reversible systems
    Klaus, J
    Knobloch, J
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (09): : 2603 - 2622
  • [40] Families of periodic orbits in resonant reversible systems
    Maurício Firmino Silva Lima
    Marco Antonio Teixeira
    Bulletin of the Brazilian Mathematical Society, New Series, 2009, 40 : 511 - 537