Almost Global Existence for the 3D Prandtl Boundary Layer Equations

被引:0
|
作者
Xueyun Lin
Ting Zhang
机构
[1] Zhejiang University,School of Mathematical Sciences
[2] Fuzhou University,College of Mathematics and Computer Science
来源
关键词
Prandtl equations; Almost global existence; Littlewood-Paley theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the almost global existence of classical solutions to the 3D Prandtl system with the initial data which lie within ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon $\end{document} of a stable shear flow. Using anisotropic Littlewood-Paley energy estimates in tangentially analytic norms and introducing new linearly-good unknowns, we prove that the 3D Prandtl system has a unique solution with the lifespan of which is greater than exp(ε−1/log(ε−1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exp (\varepsilon ^{-1}/\log (\varepsilon ^{-1}))$\end{document}. This result extends the work obtained by Ignatova and Vicol (Arch. Ration. Mech. Anal. 2:809–848, 2016) on the 2D Prandtl equations to the three-dimensional setting.
引用
收藏
页码:383 / 410
页数:27
相关论文
共 50 条