On existence of global classical solutions to the 3D compressible MHD equations with vacuum

被引:0
|
作者
Mingyu Zhang
机构
[1] Weifang University,School of Mathematics and Information Science
关键词
Compressible magnetohydrodynamic equations; Cauchy problem; Global classical solution; Small density; Vacuum; 35A09; 35Q35; 76D03; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the existence of global classical solutions is justified for the three-dimensional compressible magnetohydrodynamic (MHD) equations with vacuum. The main goal of this paper is to obtain a unique global classical solution on R3×[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{3}\times [0, T]$\end{document} with any T∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T\in (0, \infty )$\end{document}, provided that the initial magnetic field in the L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{3}$\end{document}-norm and the initial density are suitably small. Note that the first result is obtained under the condition of ρ0∈Lγ∩W2,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho _{0}\in L^{\gamma }\cap W^{2, q}$\end{document} with q∈(3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q\in (3, 6)$\end{document} and γ∈(1,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma \in (1, 6)$\end{document}. It should be noted that the initial total energy can be arbitrarily large, the initial density allowed to vanish, and the system does not satisfy the conservation law of mass (i.e., ρ0∉L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho _{0} \notin L^{1}$\end{document}). Thus, the results obtained particularly extend the one due to Li–Xu–Zhang (Li et al. in SIAM J. Math. Anal. 45:1356–1387, 2013), where the global well-posedness of classical solutions with small energy was proved.
引用
收藏
相关论文
共 50 条