On existence of global classical solutions to the 3D compressible MHD equations with vacuum

被引:0
|
作者
Mingyu Zhang
机构
[1] Weifang University,School of Mathematics and Information Science
关键词
Compressible magnetohydrodynamic equations; Cauchy problem; Global classical solution; Small density; Vacuum; 35A09; 35Q35; 76D03; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the existence of global classical solutions is justified for the three-dimensional compressible magnetohydrodynamic (MHD) equations with vacuum. The main goal of this paper is to obtain a unique global classical solution on R3×[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{3}\times [0, T]$\end{document} with any T∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T\in (0, \infty )$\end{document}, provided that the initial magnetic field in the L3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{3}$\end{document}-norm and the initial density are suitably small. Note that the first result is obtained under the condition of ρ0∈Lγ∩W2,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho _{0}\in L^{\gamma }\cap W^{2, q}$\end{document} with q∈(3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q\in (3, 6)$\end{document} and γ∈(1,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma \in (1, 6)$\end{document}. It should be noted that the initial total energy can be arbitrarily large, the initial density allowed to vanish, and the system does not satisfy the conservation law of mass (i.e., ρ0∉L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho _{0} \notin L^{1}$\end{document}). Thus, the results obtained particularly extend the one due to Li–Xu–Zhang (Li et al. in SIAM J. Math. Anal. 45:1356–1387, 2013), where the global well-posedness of classical solutions with small energy was proved.
引用
收藏
相关论文
共 50 条
  • [31] Global existence and convergence rates of smooth solutions for the full compressible MHD equations
    Xueke Pu
    Boling Guo
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 519 - 538
  • [32] Global existence and convergence rates of smooth solutions for the full compressible MHD equations
    Pu, Xueke
    Guo, Boling
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03): : 519 - 538
  • [33] Global helically symmetric solutions to 3D MHD equations
    Wen Gao
    Zhen-hua Guo
    Dong-juan Niu
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 347 - 358
  • [34] Global Helically Symmetric Solutions to 3D MHD Equations
    Wen GAO
    Zhen-hua GUO
    Dong-juan NIU
    Acta Mathematicae Applicatae Sinica, 2014, (02) : 347 - 358
  • [35] Global Helically Symmetric Solutions to 3D MHD Equations
    Gao, Wen
    Guo, Zhen-hua
    Niu, Dong-juan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (02): : 347 - 358
  • [36] Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum
    Ding, Shijin
    Huang, Bingyuan
    Liu, Xiaoling
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [37] On the global existence of classical solutions for compressible nematic liquid crystal flows with vacuum
    Yang Liu
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [38] On the global existence of classical solutions for compressible nematic liquid crystal flows with vacuum
    Liu, Yang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [39] Global existence of weak solutions to 3D compressible primitive equations of atmospheric dynamics with degenerate viscosity
    Ouya, Jules
    Ouedraogo, Arouna
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2247 - 2285
  • [40] Global existence and convergence rates of solutions for the 3D compressible magnetohydrodynamic equations without heat conductivity
    Wei, Ruiying
    Li, Yin
    Guo, Boling
    APPLICABLE ANALYSIS, 2020, 99 (10) : 1661 - 1684