Total coloring of outer-1-planar graphs with near-independent crossings

被引:0
|
作者
Xin Zhang
机构
[1] Xidian University,School of Mathematics and Statistics
来源
关键词
Outerplanar graph; Outer-1-planar graph; Local structure; Total coloring;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G is outer-1-planar with near-independent crossings if it can be drawn in the plane so that all vertices are on the outer face and |MG(c1)∩MG(c2)|≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|M_G(c_1)\cap M_G(c_2)|\le 1$$\end{document} for any two distinct crossings c1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1$$\end{document} and c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2$$\end{document} in G, where MG(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_G(c)$$\end{document} consists of the end-vertices of the two crossed edges that generate c. In Zhang and Liu (Total coloring of pseudo-outerplanar graphs, arXiv:1108.5009), it is showed that the total chromatic number of every outer-1-planar graph with near-independent crossings and with maximum degree at least 5 is Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta +1$$\end{document}. In this paper we extend the result to maximum degree 4 by proving that the total chromatic number of every outer-1-planar graph with near-independent crossings and with maximum degree 4 is exactly 5.
引用
收藏
页码:661 / 675
页数:14
相关论文
共 50 条
  • [41] On the Equitable Edge-Coloring of 1-Planar Graphs and Planar Graphs
    Dai-Qiang Hu
    Jian-Liang Wu
    Donglei Yang
    Xin Zhang
    Graphs and Combinatorics, 2017, 33 : 945 - 953
  • [42] A Larger Family of Planar Graphs that Satisfy the Total Coloring Conjecture
    Leidner, Maxfield
    GRAPHS AND COMBINATORICS, 2014, 30 (02) : 377 - 388
  • [43] Total coloring of planar graphs without adjacent short cycles
    Wang, Huijuan
    Liu, Bin
    Gu, Yan
    Zhang, Xin
    Wu, Weili
    Gao, Hongwei
    Journal of Combinatorial Optimization, 2017, 33 (01): : 265 - 274
  • [44] Minimum total coloring of planar graphs with maximum degree 8
    Liting Wang
    Huijuan Wang
    Weili Wu
    Journal of Combinatorial Optimization, 2023, 45
  • [45] A note on the neighbor sum distinguishing total coloring of planar graphs
    Song, Hong Jie
    Pan, Wen Hua
    Gong, Xiang Nan
    Xu, Chang Qing
    THEORETICAL COMPUTER SCIENCE, 2016, 640 : 125 - 129
  • [46] Minimum total coloring of planar graphs with maximum degree 8
    Wang, Liting
    Wang, Huijuan
    Wu, Weili
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (02)
  • [47] Total coloring of planar graphs without 6-cycles
    Center for Discrete Mathematics, Fuzhou University, Fuzhou 350002, China
    不详
    Discrete Appl Math, 1600, 2-3 (157-163):
  • [48] Total coloring of planar graphs without 6-cycles
    Hou, Jianfeng
    Liu, Bin
    Liu, Guizhen
    Wu, Jianliang
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) : 157 - 163
  • [49] Total coloring of planar graphs without adjacent short cycles
    Wang, Huijuan
    Liu, Bin
    Gu, Yan
    Zhang, Xin
    Wu, Weili
    Gao, Hongwei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 265 - 274
  • [50] Equitable coloring in 1-planar graphs
    Cranston, Daniel W.
    Mahmoud, Reem
    DISCRETE MATHEMATICS, 2025, 348 (02)