Total coloring of outer-1-planar graphs with near-independent crossings

被引:0
|
作者
Xin Zhang
机构
[1] Xidian University,School of Mathematics and Statistics
来源
关键词
Outerplanar graph; Outer-1-planar graph; Local structure; Total coloring;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G is outer-1-planar with near-independent crossings if it can be drawn in the plane so that all vertices are on the outer face and |MG(c1)∩MG(c2)|≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|M_G(c_1)\cap M_G(c_2)|\le 1$$\end{document} for any two distinct crossings c1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1$$\end{document} and c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_2$$\end{document} in G, where MG(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_G(c)$$\end{document} consists of the end-vertices of the two crossed edges that generate c. In Zhang and Liu (Total coloring of pseudo-outerplanar graphs, arXiv:1108.5009), it is showed that the total chromatic number of every outer-1-planar graph with near-independent crossings and with maximum degree at least 5 is Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta +1$$\end{document}. In this paper we extend the result to maximum degree 4 by proving that the total chromatic number of every outer-1-planar graph with near-independent crossings and with maximum degree 4 is exactly 5.
引用
收藏
页码:661 / 675
页数:14
相关论文
共 50 条
  • [31] Total coloring of planar graphs without short cycles
    Hua Cai
    Jianliang Wu
    Lin Sun
    Journal of Combinatorial Optimization, 2016, 31 : 1650 - 1664
  • [32] The adjacent vertex distinguishing total coloring of planar graphs
    Wang, Weifan
    Huang, Danjun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 379 - 396
  • [33] Total coloring of planar graphs with maximum degree 8
    Wang, Huijuan
    Wu, Lidong
    Wu, Jianliang
    THEORETICAL COMPUTER SCIENCE, 2014, 522 : 54 - 61
  • [34] On the neighbor sum distinguishing total coloring of planar graphs
    Qu, Cunquan
    Wang, Guanghui
    Wu, Jianliang
    Yu, Xiaowei
    THEORETICAL COMPUTER SCIENCE, 2016, 609 : 162 - 170
  • [35] Total coloring of planar graphs with maximum degree 7
    Wang, Bing
    Wu, Jian-Liang
    INFORMATION PROCESSING LETTERS, 2011, 111 (20) : 1019 - 1021
  • [36] The adjacent vertex distinguishing total coloring of planar graphs
    Weifan Wang
    Danjun Huang
    Journal of Combinatorial Optimization, 2014, 27 : 379 - 396
  • [37] Total coloring of planar graphs of maximum degree eight
    Roussel, Nicolas
    Zhu, Xuding
    INFORMATION PROCESSING LETTERS, 2010, 110 (8-9) : 321 - 324
  • [38] Total coloring of planar graphs without short cycles
    Cai, Hua
    Wu, Jianliang
    Sun, Lin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (04) : 1650 - 1664
  • [40] On the Equitable Edge-Coloring of 1-Planar Graphs and Planar Graphs
    Hu, Dai-Qiang
    Wu, Jian-Liang
    Yang, Donglei
    Zhang, Xin
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 945 - 953