New lower bounds for permutation arrays using contraction

被引:0
|
作者
Sergey Bereg
Zevi Miller
Luis Gerardo Mojica
Linda Morales
I. H. Sudborough
机构
[1] University of Texas at Dallas,Computer Science Department
[2] Miami University,Department of Mathematics
来源
关键词
Permutation arrays; Contraction; AGL(1, q); PGL(2, q); 05A05; 05B30; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
A permutation array A is a set of permutations on a finite set Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, say of size n. Given distinct permutations π,σ∈Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi , \sigma \in \Omega $$\end{document}, we let hd(π,σ)=|{x∈Ω:π(x)≠σ(x)}|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hd(\pi , \sigma ) = |\{ x\in \Omega : \pi (x) \ne \sigma (x) \}|$$\end{document}, called the Hamming distance between π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. Now let hd(A)=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hd(A) =$$\end{document} min{hd(π,σ):π,σ∈A}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ hd(\pi , \sigma ): \pi , \sigma \in A \}$$\end{document}. For positive integers n and d with d≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le n$$\end{document} we let M(n, d) be the maximum number of permutations in any array A satisfying hd(A)≥d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hd(A) \ge d$$\end{document}. There is an extensive literature on the function M(n, d), motivated in part by suggested applications to error correcting codes for message transmission over power lines. A basic fact is that if a permutation group G is sharply k-transitive on a set of size n≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge k$$\end{document}, then M(n,n-k+1)=|G|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(n,n-k+1) = |G|$$\end{document}. Motivated by this we consider the permutation groups AGL(1, q) and PGL(2, q) acting sharply 2-transitively on GF(q) and sharply 3-transitively on GF(q)∪{∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GF(q)\cup \{\infty \}$$\end{document} respectively. Applying a contraction operation to these groups, we obtain the following new lower bounds for prime powers q satisfying q≡1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1$$\end{document} (mod 3).M(q-1,q-3)≥(q2-1)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(q-1,q-3)\ge (q^{2} - 1)/2$$\end{document} for q odd, q≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 7$$\end{document},M(q-1,q-3)≥(q-1)(q+2)/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(q-1,q-3)\ge (q-1)(q+2)/3$$\end{document} for q even, q≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 8$$\end{document},M(q,q-3)≥Kq2log(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(q,q-3)\ge Kq^{2}log(q)$$\end{document} for some constant K>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K>0$$\end{document} if q is odd. These results resolve a case left open in a previous paper (Bereg et al. in Des Codes Cryptogr 86(5):1095–1111, 2018), where it was shown that M(q-1,q-3)≥q2-q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(q-1, q-3) \ge q^{2} - q$$\end{document} and M(q,q-3)≥q3-q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(q,q-3) \ge q^{3} - q$$\end{document} for all prime powers q such that q≢1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\not \equiv 1$$\end{document} (mod 3). We also obtain lower bounds for M(n, d) for a finite number of exceptional pairs n, d, by applying this contraction operation to the sharply 4 and 5-transitive Mathieu groups.
引用
收藏
页码:2105 / 2128
页数:23
相关论文
共 50 条
  • [21] New theoretical bounds and constructions of permutation codes under block permutation metric
    Zixiang Xu
    Yiwei Zhang
    Gennian Ge
    Designs, Codes and Cryptography, 2019, 87 : 2625 - 2637
  • [22] New upper bounds for the permutation flowshop scheduling problem
    Jedrzejowicz, J
    Jedrzejowicz, P
    INNOVATIONS IN APPLIED ARTIFICIAL INTELLIGENCE, 2005, 3533 : 232 - 235
  • [23] New lower bounds for the Hilbert numbers using reversible centers
    Prohens, R.
    Torregrosa, J.
    NONLINEARITY, 2019, 32 (01) : 331 - 355
  • [24] Constructing permutation arrays using partition and extension
    Sergey Bereg
    Luis Gerardo Mojica
    Linda Morales
    Hal Sudborough
    Designs, Codes and Cryptography, 2020, 88 : 311 - 339
  • [25] NEW BOUNDS FOR THE SIZES OF RADAR ARRAYS
    ZHANG, Z
    TU, CM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) : 1672 - 1678
  • [26] New Bounds for Ternary Covering Arrays Using a Parallel Simulated Annealing
    Avila-George, Himer
    Torres-Jimenez, Jose
    Hernandez, Vicente
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [27] Constructing permutation arrays using partition and extension
    Bereg, Sergey
    Mojica, Luis Gerardo
    Morales, Linda
    Sudborough, Hal
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (02) : 311 - 339
  • [28] Using permutation rational functions to obtain permutation arrays with large hamming distance
    Sergey Bereg
    Brian Malouf
    Linda Morales
    Thomas Stanley
    I. Hal Sudborough
    Designs, Codes and Cryptography, 2022, 90 : 1659 - 1677
  • [29] ELIMINATION CONDITIONS AND LOWER BOUNDS FOR THE PERMUTATION FLOW-SHOP SEQUENCING PROBLEM
    越民义
    韩继业
    陈永茂
    Acta Mathematicae Applicatae Sinica(English Series), 1985, (04) : 321 - 331
  • [30] Upper and lower bounds for the permutation flowshop scheduling problem with minimal time lags
    Hamdi, Imen
    Loukil, Taicir
    OPTIMIZATION LETTERS, 2015, 9 (03) : 465 - 482