Stabilization of a fractional-order chaotic brushless DC motor via a single input

被引:0
|
作者
Ping Zhou
Rong-ji Bai
Ji-ming Zheng
机构
[1] Chongqing University of Posts and Telecommunications,Center of System Theory and its Applications
[2] Chongqing University of Posts and Telecommunications,Key Laboratory of Network Control and Intelligent Instrument of Ministry of Education
来源
Nonlinear Dynamics | 2015年 / 82卷
关键词
Fractional-order brushless DC motor; Chaotic attractor ; Generalized Gronwall inequality; Mittag–Leffler function; Control of chaos;
D O I
暂无
中图分类号
学科分类号
摘要
A fractional-order brushless DC motor (BLDCM) system is proposed in this paper. By computer simulations, we find that the fractional-order BLDCM system exhibits a chaotic attractor for fractional order 0.96<q≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.96 < q \le 1$$\end{document}, and that the largest Lyapunov exponent varies depending on fractional-order q. Furthermore, in order to stabilize the fractional-order chaotic BLDCM system, two control strategies are presented via single input, based on the generalized Gronwall inequality and the Mittag–Leffler function. Numerical simulations are presented to verify the validity and feasibility of the proposed control schemes.
引用
收藏
页码:519 / 525
页数:6
相关论文
共 50 条
  • [1] Stabilization of a fractional-order chaotic brushless DC motor via a single input
    Zhou, Ping
    Bai, Rong-ji
    Zheng, Ji-ming
    [J]. NONLINEAR DYNAMICS, 2015, 82 (1-2) : 519 - 525
  • [2] Stabilization of the Fractional-Order Chua Chaotic Circuit via the Caputo Derivative of a Single Input
    Yang, Chunde
    Cai, Hao
    Zhou, Ping
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [3] Synchronization of the Fractional-Order Brushless DC Motors Chaotic System
    Shen, Shiyun
    Zhou, Ping
    [J]. JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2016, 2016
  • [4] Stabilization of a Fractional-Order Nonlinear Brushless Direct Current Motor
    Huang, Sunhua
    Wang, Bin
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (04):
  • [5] Mathematical modeling and analysis of fractional-order brushless DC motor
    Zafar, Zain Ul Abadin
    Ali, Nigar
    Tunc, Cemil
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [6] Mathematical modeling and analysis of fractional-order brushless DC motor
    Zain Ul Abadin Zafar
    Nigar Ali
    Cemil Tunç
    [J]. Advances in Difference Equations, 2021
  • [7] Projective Synchronization For Brushless DC Motor (BLDCM)With Fractional-Order
    Huang, Suhai
    [J]. ADVANCES IN INTELLIGENT STRUCTURE AND VIBRATION CONTROL, 2012, 160 : 327 - 330
  • [8] Global exponential stabilization for chaotic brushless DC motors with a single input
    Wei, Du Qu
    Wan, Li
    Luo, Xiao Shu
    Zeng, Shang You
    Zhang, Bo
    [J]. NONLINEAR DYNAMICS, 2014, 77 (1-2) : 209 - 212
  • [9] Global exponential stabilization for chaotic brushless DC motors with a single input
    Du Qu Wei
    Li Wan
    Xiao Shu Luo
    Shang You Zeng
    Bo Zhang
    [J]. Nonlinear Dynamics, 2014, 77 : 209 - 212
  • [10] Stabilization of fractional-order chaotic system via a single state adaptive-feedback controller
    Zhang, Ruoxun
    Yang, Shiping
    [J]. NONLINEAR DYNAMICS, 2012, 68 (1-2) : 45 - 51