Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise

被引:0
|
作者
Le Chen
Yaozhong Hu
Kamran Kalbasi
David Nualart
机构
[1] University of Kansas,Department of Mathematics
[2] University of Warwick,Mathematics Institute
来源
关键词
Stochastic heat equation; Feynman–Kac integral; Feynman–Kac formula; Time fractional Gaussian noise; Fractional calculus; Moment bounds; Lyapunov exponents; Intermittency; Primary 60H15; Secondary 60G60; 35R60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the stochastic heat equation driven by time fractional Gaussian noise with Hurst parameter H∈(0,1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1/2)$$\end{document}. We establish the Feynman–Kac representation of the solution and use this representation to obtain matching lower and upper bounds for the Lp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\Omega )$$\end{document} moments of the solution.
引用
收藏
页码:431 / 457
页数:26
相关论文
共 50 条
  • [41] Fractional Kinetic Equation Driven by General Space-Time Homogeneous Gaussian Noise
    Liu, Junfeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (06) : 3475 - 3499
  • [42] The Stochastic Heat Equation with Multiplicative Levy Noise: Existence, Moments, and Intermittency
    Berger, Quentin
    Chong, Carsten
    Lacoin, Hubert
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (03) : 2215 - 2299
  • [43] LARGE DEVIATION PRINCIPLE FOR A SPACE-TIME FRACTIONAL STOCHASTIC HEAT EQUATION WITH FRACTIONAL NOISE
    Yan, Litan
    Yin, Xiuwei
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (02) : 462 - 485
  • [44] Large Deviation Principle for a Space-Time Fractional Stochastic Heat Equation with Fractional Noise
    Litan Yan
    Xiuwei Yin
    Fractional Calculus and Applied Analysis, 2018, 21 : 462 - 485
  • [45] Quenched asymptotics for a 1-d stochastic heat equation driven by a rough spatial noise
    Chakraborty, Prakash
    Chen, Xia
    Gao, Bo
    Tindel, Samy
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (11) : 6689 - 6732
  • [46] Parabolic Anderson model with a fractional Gaussian noise that is rough in time
    Chen, Xia
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 792 - 825
  • [47] Bismut formula for a stochastic heat equation with fractional noise
    Yan, Litan
    Yin, Xiuwei
    STATISTICS & PROBABILITY LETTERS, 2018, 137 : 165 - 172
  • [48] A note on intermittency for the fractional heat equation
    Balan, Raluca M.
    Conus, Daniel
    STATISTICS & PROBABILITY LETTERS, 2014, 95 : 6 - 14
  • [49] Covariance measure and stochastic heat equation with fractional noise
    Ciprian Tudor
    Mounir Zili
    Fractional Calculus and Applied Analysis, 2014, 17 : 807 - 826
  • [50] Covariance measure and stochastic heat equation with fractional noise
    Tudor, Ciprian
    Zili, Mounir
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 807 - 826