Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise

被引:0
|
作者
Le Chen
Yaozhong Hu
Kamran Kalbasi
David Nualart
机构
[1] University of Kansas,Department of Mathematics
[2] University of Warwick,Mathematics Institute
来源
关键词
Stochastic heat equation; Feynman–Kac integral; Feynman–Kac formula; Time fractional Gaussian noise; Fractional calculus; Moment bounds; Lyapunov exponents; Intermittency; Primary 60H15; Secondary 60G60; 35R60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the stochastic heat equation driven by time fractional Gaussian noise with Hurst parameter H∈(0,1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (0,1/2)$$\end{document}. We establish the Feynman–Kac representation of the solution and use this representation to obtain matching lower and upper bounds for the Lp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\Omega )$$\end{document} moments of the solution.
引用
收藏
页码:431 / 457
页数:26
相关论文
共 50 条
  • [21] Time-space fractional stochastic Ginzburg-Landau equation driven by Gaussian white noise
    Shen, Tianlong
    Xin, Jie
    Huang, Jianhua
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (01) : 103 - 113
  • [22] A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise
    Babaei, Afshin
    Jafari, Hossein
    Banihashemi, S.
    SYMMETRY-BASEL, 2020, 12 (06):
  • [23] On the law of the solution to a stochastic heat equation with fractional noise in time
    Bourguin, Solesne
    Tudor, Ciprian A.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2015, 23 (03) : 179 - 186
  • [24] Solving a stochastic heat equation driven by a bi-fractional noise
    Xianye Yu
    Xichao Sun
    Litan Yan
    Boundary Value Problems, 2016
  • [25] Solving a stochastic heat equation driven by a bi-fractional noise
    Yu, Xianye
    Sun, Xichao
    Yan, Litan
    BOUNDARY VALUE PROBLEMS, 2016,
  • [26] Stochastic heat equation with general rough noise
    Hu, Yaozhong
    Wang, Xiong
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (01): : 379 - 423
  • [27] INTERMITTENCY FOR THE WAVE AND HEAT EQUATIONS WITH FRACTIONAL NOISE IN TIME
    Balan, Raluca M.
    Conus, Daniel
    ANNALS OF PROBABILITY, 2016, 44 (02): : 1488 - 1534
  • [28] Space-time fractional Anderson model driven by Gaussian noise rough in space
    Liu, Junfeng
    Wang, Zhi
    Wang, Zengwu
    STOCHASTICS AND DYNAMICS, 2023, 23 (01)
  • [29] SOME STABILITY RESULTS FOR SEMILINEAR STOCHASTIC HEAT EQUATION DRIVEN BY A FRACTIONAL NOISE
    El Barrimi, Oussama
    Ouknine, Youssef
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (03) : 631 - 648
  • [30] Fractional Kinetic Equation Driven by General Space–Time Homogeneous Gaussian Noise
    Junfeng Liu
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 3475 - 3499