Linear sets and MRD-codes arising from a class of scattered linearized polynomials

被引:0
|
作者
Giovanni Longobardi
Corrado Zanella
机构
[1] Università degli Studi di Padova,Dipartimento di Tecnica e Gestione dei Sistemi Industriali
来源
关键词
Linearized polynomial; Linear set; Subgeometry; Finite field; Finite projective space; Rank metric code; MRD-code;
D O I
暂无
中图分类号
学科分类号
摘要
A class of scattered linearized polynomials covering infinitely many field extensions is exhibited. More precisely, the q-polynomial over Fq6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{q^6}$$\end{document}, q≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \equiv 1\pmod 4$$\end{document} described in Bartoli et al. (ARS Math Contemp 19:125–145, 2020) and Zanella and Zullo (Discrete Math 343:111800, 2020) is generalized for any even n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 6$$\end{document} to an Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {F}}}_q}$$\end{document}-linear automorphism ψ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (x)$$\end{document} of Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{q^n}$$\end{document} of order n. Such ψ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (x)$$\end{document} and some functional powers of it are proved to be scattered. In particular, this provides new maximum scattered linear sets of the projective line PG(1,qn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{PG}}\,}}(1,q^n)$$\end{document} for n=8,10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=8,10$$\end{document}. The polynomials described in this paper lead to a new infinite family of MRD-codes in Fqn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_q^{n\times n}$$\end{document} with minimum distance n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} for any odd q if n≡0(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 0\pmod 4$$\end{document} and any q≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\pmod 4$$\end{document} if n≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 2\pmod 4$$\end{document}.
引用
收藏
页码:639 / 661
页数:22
相关论文
共 50 条
  • [41] Robust Hurwitz stability of a class of complex polynomials arising from H∞ control theory
    Wang, ZH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (06): : 380 - 390
  • [42] SOME IDENTITIES OF CHEBYSHEV POLYNOMIALS ARISING FROM NON-LINEAR DIFFERENTIAL EQUATIONS
    Kim, Taekyun
    Kim, Dae San
    Seo, Jong-Jin
    Dolgy, Dmitry V.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (05) : 820 - 832
  • [43] Linear codes arising from the Gale transform of distinguished subsets of some projective spaces
    Cossidente, Antonio
    Sonnino, Angelo
    DISCRETE MATHEMATICS, 2012, 312 (03) : 647 - 651
  • [44] Cones from maximum h-scattered linear sets and a stability result for cylinders from hyperovals
    Adriaensen, Sam
    Mannaert, Jonathan
    Santonastaso, Paolo
    Zullo, Ferdinando
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [45] Minimal linear codes from defining sets over Fp plus uFp
    Gao, Jian
    Zhang, Yaozong
    Meng, Xiangrui
    Fu, Fang-Wei
    DISCRETE MATHEMATICS, 2023, 346 (10)
  • [46] Construction of Two Classes of Minimal Binary Linear Codes from Definition Sets
    Wu, Hao
    Du, Xiaoni
    Qiao, Xingbin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (12) : 1470 - 1474
  • [47] Linear codes from defining sets over Fp+ uFp and their applications
    Zeng, Xiangdi
    Zhang, Yaozong
    Gao, Jian
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [48] Complete Weight Enumerators of a Class of Linear Codes From Weil Sums
    Yang, Shudi
    IEEE ACCESS, 2020, 8 : 194631 - 194639
  • [49] The weight distribution of a class of linear codes from perfect nonlinear functions
    Yuan, J
    Carlet, C
    Ding, C
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) : 712 - 717
  • [50] Linear codes from narrow ray class groups of algebraic curves
    Xing, CP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (03) : 541 - 543