Linear sets and MRD-codes arising from a class of scattered linearized polynomials

被引:0
|
作者
Giovanni Longobardi
Corrado Zanella
机构
[1] Università degli Studi di Padova,Dipartimento di Tecnica e Gestione dei Sistemi Industriali
来源
关键词
Linearized polynomial; Linear set; Subgeometry; Finite field; Finite projective space; Rank metric code; MRD-code;
D O I
暂无
中图分类号
学科分类号
摘要
A class of scattered linearized polynomials covering infinitely many field extensions is exhibited. More precisely, the q-polynomial over Fq6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{q^6}$$\end{document}, q≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \equiv 1\pmod 4$$\end{document} described in Bartoli et al. (ARS Math Contemp 19:125–145, 2020) and Zanella and Zullo (Discrete Math 343:111800, 2020) is generalized for any even n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 6$$\end{document} to an Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {F}}}_q}$$\end{document}-linear automorphism ψ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (x)$$\end{document} of Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{q^n}$$\end{document} of order n. Such ψ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (x)$$\end{document} and some functional powers of it are proved to be scattered. In particular, this provides new maximum scattered linear sets of the projective line PG(1,qn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{PG}}\,}}(1,q^n)$$\end{document} for n=8,10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=8,10$$\end{document}. The polynomials described in this paper lead to a new infinite family of MRD-codes in Fqn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_q^{n\times n}$$\end{document} with minimum distance n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} for any odd q if n≡0(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 0\pmod 4$$\end{document} and any q≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\pmod 4$$\end{document} if n≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 2\pmod 4$$\end{document}.
引用
收藏
页码:639 / 661
页数:22
相关论文
共 50 条
  • [31] Bent vectorial functions and linear codes from o-polynomials
    Mesnager, Sihem
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 77 (01) : 99 - 116
  • [32] Bent vectorial functions and linear codes from o-polynomials
    Sihem Mesnager
    Designs, Codes and Cryptography, 2015, 77 : 99 - 116
  • [33] Small Weight Codewords in the LDPC Codes Arising From Linear Representations of Geometries
    Pepe, V.
    Storme, L.
    Van de Voorde, G.
    JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (01) : 1 - 24
  • [34] Optimal Sets of Frequency Hopping Sequences From Linear Cyclic Codes
    Ding, Cunsheng
    Yang, Yang
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (07) : 3605 - 3612
  • [35] Difference sets and three-weight linear codes from trinomials
    Ahmadi, Omran
    Shafaeiabr, Masoud
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [36] ON A CLASS OF OPTIMAL NONBINARY LINEAR UNEQUAL-ERROR-PROTECTION CODES FOR 2 SETS OF MESSAGES
    MORELOSZARAGOZA, RH
    LIN, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (01) : 196 - 200
  • [37] A class of linear codes with good parameters from algebraic curves
    Xing, CP
    Ling, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) : 1527 - 1532
  • [38] New Non-Binary Quantum Codes Derived From a Class of Linear Codes
    Gao, Jian
    Wang, Yongkang
    IEEE ACCESS, 2019, 7 : 26418 - 26421
  • [39] Weight distribution of a class of binary linear block codes formed from RCPC codes
    Shen, YS
    Cosman, PC
    Milstein, LB
    IEEE COMMUNICATIONS LETTERS, 2005, 9 (09) : 811 - 813
  • [40] A construction of linear codes and strongly regular graphs from q-polynomials
    Luo, Gaojun
    Cao, Xiwang
    DISCRETE MATHEMATICS, 2017, 340 (09) : 2262 - 2274