Linear sets and MRD-codes arising from a class of scattered linearized polynomials

被引:0
|
作者
Giovanni Longobardi
Corrado Zanella
机构
[1] Università degli Studi di Padova,Dipartimento di Tecnica e Gestione dei Sistemi Industriali
来源
关键词
Linearized polynomial; Linear set; Subgeometry; Finite field; Finite projective space; Rank metric code; MRD-code;
D O I
暂无
中图分类号
学科分类号
摘要
A class of scattered linearized polynomials covering infinitely many field extensions is exhibited. More precisely, the q-polynomial over Fq6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{q^6}$$\end{document}, q≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \equiv 1\pmod 4$$\end{document} described in Bartoli et al. (ARS Math Contemp 19:125–145, 2020) and Zanella and Zullo (Discrete Math 343:111800, 2020) is generalized for any even n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 6$$\end{document} to an Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {F}}}_q}$$\end{document}-linear automorphism ψ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (x)$$\end{document} of Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_{q^n}$$\end{document} of order n. Such ψ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (x)$$\end{document} and some functional powers of it are proved to be scattered. In particular, this provides new maximum scattered linear sets of the projective line PG(1,qn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{{PG}}\,}}(1,q^n)$$\end{document} for n=8,10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=8,10$$\end{document}. The polynomials described in this paper lead to a new infinite family of MRD-codes in Fqn×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {F}}}_q^{n\times n}$$\end{document} with minimum distance n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} for any odd q if n≡0(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 0\pmod 4$$\end{document} and any q≡1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\pmod 4$$\end{document} if n≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 2\pmod 4$$\end{document}.
引用
收藏
页码:639 / 661
页数:22
相关论文
共 50 条
  • [1] Linear sets and MRD-codes arising from a class of scattered linearized polynomials
    Longobardi, Giovanni
    Zanella, Corrado
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (03) : 639 - 661
  • [2] Maximum scattered linear sets and MRD-codes
    Csajbok, Bence
    Marino, Giuseppe
    Polverino, Olga
    Zullo, Ferdinando
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (3-4) : 517 - 531
  • [3] Maximum scattered linear sets and MRD-codes
    Bence Csajbók
    Giuseppe Marino
    Olga Polverino
    Ferdinando Zullo
    Journal of Algebraic Combinatorics, 2017, 46 : 517 - 531
  • [4] Partially scattered linearized polynomials and rank metric codes
    Longobardi, Giovanni
    Zanella, Corrado
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 76
  • [5] New MRD codes from linear cutting blocking sets
    Daniele Bartoli
    Giuseppe Marino
    Alessandro Neri
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 115 - 142
  • [6] New MRD codes from linear cutting blocking sets
    Bartoli, Daniele
    Marino, Giuseppe
    Neri, Alessandro
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) : 115 - 142
  • [7] Planar polynomials arising from linearized polynomials
    Bartoli, Daniele
    Bonini, Matteo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (01)
  • [8] A Large Family of Maximum Scattered Linear Sets of PG(1, qn) and Their Associated MRD Codes
    Longobardi, G.
    Marino, Giuseppe
    Trombetti, Rocco
    Zhou, Yue
    COMBINATORICA, 2023, 43 (04) : 681 - 716
  • [9] CODES WITH FEW WEIGHTS ARISING FROM LINEAR SETS
    Napolitano, Vito
    Zullo, Ferdinando
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, : 320 - 332
  • [10] Minimal linear codes arising from blocking sets
    Bonini, Matteo
    Borello, Martino
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (02) : 327 - 341