Triangulation independent Ptolemy varieties

被引:0
|
作者
Matthias Goerner
Christian K. Zickert
机构
[1] Pixar Animation Studios,Department of Mathematics
[2] University of Maryland,undefined
来源
Mathematische Zeitschrift | 2018年 / 289卷
关键词
Ptolemy coordinates; Representation variety; Character variety; -polynomial; Primary 57N10; 57M27; 57M50; Secondary: 13P10;
D O I
暂无
中图分类号
学科分类号
摘要
The Ptolemy variety for SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document} is an invariant of a topological ideal triangulation of a compact 3-manifold M. It is closely related to Thurston’s gluing equation variety. The Ptolemy variety maps naturally to the set of conjugacy classes of boundary-unipotent SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document}-representations, but (like the gluing equation variety) it depends on the triangulation, and may miss several components of representations. In this paper, we define a Ptolemy variety, which is independent of the choice of triangulation, and detects all boundary-unipotent irreducible SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document}-representations. We also define variants of the Ptolemy variety for PSL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{PSL}}}(2,{\mathbb {C}})$$\end{document}-representations, and representations that are not necessarily boundary-unipotent. In particular, we obtain an algorithm to compute all irreducible SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document}-characters as well as the full A-polynomial. All the varieties are topological invariants of M.
引用
收藏
页码:663 / 693
页数:30
相关论文
共 50 条
  • [41] Intensity Control of Triangulation Based PSD Sensor Independent of Object Color Variation
    Jung, Jong Kyu
    Kang, Seong Gu
    Nam, Joon Sik
    Park, Kyi Hwan
    IEEE SENSORS JOURNAL, 2011, 11 (12) : 3311 - 3315
  • [42] A PORTRAIT OF AN EARLY PTOLEMY
    BAILEY, DM
    JOURNAL OF EGYPTIAN ARCHAEOLOGY, 1991, 77 : 186 - &
  • [43] INDEPENDENT AXIOMATIZATION OF VARIETIES OF LATTICE ORDERED-GROUPS
    MEDVEDEV, NY
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1992, 42 (01) : 53 - 57
  • [46] The death of Ptolemy of Mauritania
    Malloch, SJV
    HISTORIA-ZEITSCHRIFT FUR ALTE GESCHICHTE, 2004, 53 (01): : 38 - 45
  • [47] Delaunay Triangulation and Tores Triangulation
    Grigis, Alain
    GEOMETRIAE DEDICATA, 2009, 143 (01) : 81 - 88
  • [48] 漫谈Ptolemy定理
    李辰旭
    中等数学, 2002, (02) : 10 - 14
  • [49] TES Microcalorimeters for PTOLEMY
    Rajteri, M.
    Biasotti, M.
    Faverzani, M.
    Ferri, E.
    Filippo, R.
    Gatti, F.
    Giachero, A.
    Monticone, E.
    Nucciotti, A.
    Puiu, A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (1-2) : 138 - 142
  • [50] COMMENTS ON WAS PTOLEMY A FRAUD
    NEWTON, RR
    QUARTERLY JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1980, 21 (04): : 388 - 399