Triangulation independent Ptolemy varieties

被引:0
|
作者
Matthias Goerner
Christian K. Zickert
机构
[1] Pixar Animation Studios,Department of Mathematics
[2] University of Maryland,undefined
来源
Mathematische Zeitschrift | 2018年 / 289卷
关键词
Ptolemy coordinates; Representation variety; Character variety; -polynomial; Primary 57N10; 57M27; 57M50; Secondary: 13P10;
D O I
暂无
中图分类号
学科分类号
摘要
The Ptolemy variety for SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document} is an invariant of a topological ideal triangulation of a compact 3-manifold M. It is closely related to Thurston’s gluing equation variety. The Ptolemy variety maps naturally to the set of conjugacy classes of boundary-unipotent SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document}-representations, but (like the gluing equation variety) it depends on the triangulation, and may miss several components of representations. In this paper, we define a Ptolemy variety, which is independent of the choice of triangulation, and detects all boundary-unipotent irreducible SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document}-representations. We also define variants of the Ptolemy variety for PSL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{PSL}}}(2,{\mathbb {C}})$$\end{document}-representations, and representations that are not necessarily boundary-unipotent. In particular, we obtain an algorithm to compute all irreducible SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document}-characters as well as the full A-polynomial. All the varieties are topological invariants of M.
引用
收藏
页码:663 / 693
页数:30
相关论文
共 50 条
  • [21] On independent varieties and some related notions
    Kowalski, Tomasz
    Paoli, Francesco
    Ledda, Antonio
    ALGEBRA UNIVERSALIS, 2013, 70 (02) : 107 - 136
  • [22] Independent joins of tolerance factorable varieties
    Chajda, Ivan
    Czedli, Gabor
    Halas, Radomir
    ALGEBRA UNIVERSALIS, 2013, 69 (01) : 83 - 92
  • [23] On independent varieties and some related notions
    Tomasz Kowalski
    Francesco Paoli
    Antonio Ledda
    Algebra universalis, 2013, 70 : 107 - 136
  • [24] The Ptolemy
    Biondi, Carminella
    STUDI FRANCESI, 2019, 63 (03) : 611 - 612
  • [25] Independent joins of tolerance factorable varieties
    Ivan Chajda
    Gábor Czédli
    Radomír Halaš
    Algebra universalis, 2013, 69 : 83 - 92
  • [26] WAS PTOLEMY A BOHR
    MOORE, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (01): : 100 - 100
  • [27] EFFECT OF MANUAL PLATE-CENTERING ON ACCURACY OF INDEPENDENT MODEL TRIANGULATION
    BONIFACE, PRJ
    PHOTOGRAMMETRIA, 1977, 32 (06): : 201 - 208
  • [28] Incremental Algorithm for Automatically Determining Independent Misclosures in Hybrid Triangulation Networks
    Song Z.
    Li R.
    Li J.
    Zhongguo Tiedao Kexue/China Railway Science, 2024, 45 (03): : 78 - 86
  • [29] BLOCK TRIANGULATION WITH INDEPENDENT MODELS - PERIMETER CONTROL IS SUFFICIENT FOR PLANIMETRIC BLOCKS
    ACKERMANN, F
    EBNER, H
    KLEIN, H
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1973, 39 (09): : 967 - 981
  • [30] P-VARIETIES - A SIGNATURE INDEPENDENT CHARACTERIZATION OF VARIETIES OF ORDERED-ALGEBRAS
    BLOOM, SL
    WRIGHT, JB
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1983, 29 (01) : 13 - 58