Triangulation independent Ptolemy varieties

被引:0
|
作者
Matthias Goerner
Christian K. Zickert
机构
[1] Pixar Animation Studios,Department of Mathematics
[2] University of Maryland,undefined
来源
Mathematische Zeitschrift | 2018年 / 289卷
关键词
Ptolemy coordinates; Representation variety; Character variety; -polynomial; Primary 57N10; 57M27; 57M50; Secondary: 13P10;
D O I
暂无
中图分类号
学科分类号
摘要
The Ptolemy variety for SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document} is an invariant of a topological ideal triangulation of a compact 3-manifold M. It is closely related to Thurston’s gluing equation variety. The Ptolemy variety maps naturally to the set of conjugacy classes of boundary-unipotent SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document}-representations, but (like the gluing equation variety) it depends on the triangulation, and may miss several components of representations. In this paper, we define a Ptolemy variety, which is independent of the choice of triangulation, and detects all boundary-unipotent irreducible SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document}-representations. We also define variants of the Ptolemy variety for PSL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{PSL}}}(2,{\mathbb {C}})$$\end{document}-representations, and representations that are not necessarily boundary-unipotent. In particular, we obtain an algorithm to compute all irreducible SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{SL}}}(2,{\mathbb {C}})$$\end{document}-characters as well as the full A-polynomial. All the varieties are topological invariants of M.
引用
收藏
页码:663 / 693
页数:30
相关论文
共 50 条