Computing Optimal Steiner Trees in Polynomial Space

被引:0
|
作者
Fedor V. Fomin
Fabrizio Grandoni
Dieter Kratsch
Daniel Lokshtanov
Saket Saurabh
机构
[1] University of Bergen,Department of Informatics
[2] University of Italian Switzerland,IDSIA
[3] Université Paul Verlaine – Metz,LITA
[4] Taramani,The Institute of Mathematical Sciences
来源
Algorithmica | 2013年 / 65卷
关键词
Steiner tree; Exact algorithms; Space complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Given an n-node edge-weighted graph and a subset of k terminal nodes, the NP-hard (weighted) Steiner tree problem is to compute a minimum-weight tree which spans the terminals. All the known algorithms for this problem which improve on trivial O(1.62n)-time enumeration are based on dynamic programming, and require exponential space.
引用
收藏
页码:584 / 604
页数:20
相关论文
共 50 条
  • [21] Optimal Steiner trees under node and edge privacy conflicts
    Alessandro Hill
    Roberto Baldacci
    Stefan Voß
    [J]. Journal of Combinatorial Optimization, 2022, 43 : 1509 - 1533
  • [22] Optimal Steiner trees under node and edge privacy conflicts
    Hill, Alessandro
    Baldacci, Roberto
    Voss, Stefan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (05) : 1509 - 1533
  • [23] A polylogarithmic approximation for computing non-metric terminal Steiner trees
    Gamzu, Iftah
    Segev, Danny
    [J]. INFORMATION PROCESSING LETTERS, 2010, 110 (18-19) : 826 - 829
  • [24] A modified Melzak procedure for computing node-weighted Steiner trees
    Underwood, A
    [J]. NETWORKS, 1996, 27 (01) : 73 - 79
  • [25] Computing the maximal canonical form for trees in polynomial time
    Gunnar Brinkmann
    [J]. Journal of Mathematical Chemistry, 2018, 56 : 1437 - 1444
  • [26] A polynomial algorithm for computing the weak rupture degree of trees
    Wei, Zongtian
    Yue, Chao
    Li, Yinkui
    Yue, Hongyun
    Liu, Yong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 730 - 734
  • [27] Computing the maximal canonical form for trees in polynomial time
    Brinkmann, Gunnar
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (05) : 1437 - 1444
  • [28] Differential calculus on the space of Steiner minimal trees in Riemannian manifolds
    Ivanov, AO
    Tuzhilin, AA
    [J]. SBORNIK MATHEMATICS, 2001, 192 (5-6) : 823 - 841
  • [29] INTEGRALITY RATIO FOR GROUP STEINER TREES AND DIRECTED STEINER TREES
    Halperin, Eran
    Kortsarz, Guy
    Krauthgamer, Robert
    Srinivasan, Aravind
    Wang, Nan
    [J]. SIAM JOURNAL ON COMPUTING, 2007, 36 (05) : 1494 - 1511
  • [30] Integrality ratio for Group Steiner Trees and Directed Steiner Trees
    Halperin, E
    Kortsarz, G
    Krauthgamer, R
    Srinivasan, A
    Nan, W
    [J]. PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 275 - 284