A polynomial algorithm for computing the weak rupture degree of trees

被引:0
|
作者
Wei, Zongtian [1 ]
Yue, Chao [1 ]
Li, Yinkui [2 ]
Yue, Hongyun [1 ]
Liu, Yong [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Shaanxi, Peoples R China
[2] Qinghai Nationalities Univ, Sch Math & Stat, Xining 810000, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph; Weak rupture degree; Tree; Algorithm; Complexity;
D O I
10.1016/j.amc.2019.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph. The weak rupture degree of G is defined as r(w) (G) = max{omega(G -X - vertical bar X vertical bar - m(e) (G -X) : omega(G - X) > 1}, where the maximum is taken over all X, the subset of V(G), omega(G - X) is the number of components in G - X, and m(e) (G - X) is the size (edge number) of a largest component in G - X. This is an important parameter to quantitatively describe the invulnerability of networks. In this paper, based on a study of relationship between network structure and the weak rupture degree, a polynomial algorithm for computing the weak rupture degree of trees is given. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:730 / 734
页数:5
相关论文
共 50 条
  • [1] The rupture degree of trees
    Li, Yinkui
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (11) : 1629 - 1635
  • [2] Rupture degree and weak rupture degree of gear graphs
    Agnes, V. Sheeba
    Geethanjaliyadav, R.
    [J]. FILOMAT, 2024, 38 (05) : 1783 - 1792
  • [3] Rupture degree of mesh and binary trees
    Manuel, Paul
    Rajasingh, Indra
    Rajan, Bharati
    Prabha, R.
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2008, 67 : 181 - 187
  • [4] Weak-Rupture Degree of Graphs
    Aslan, Ersin
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2016, 27 (06) : 725 - 738
  • [5] Computing Weak Consistency in Polynomial Time
    Golab, Wojciech
    Li, Xiaozhou
    Lopez-Ortiz, Alejandro
    Nishimura, Naomi
    [J]. PODC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2015, : 395 - 404
  • [6] Computing the topological degree of polynomial maps
    Sakkalis, T
    Ligatsikas, Z
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (01) : 87 - 94
  • [7] COMPUTING THE RUPTURE DEGREE IN COMPOSITE GRAPHS
    Aytac, Aysun
    Odabas, Zeynep Nihan
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2010, 21 (03) : 311 - 319
  • [8] Computing tenacity, rupture degree and some other vulnerability parameters in polynomial time for classes of intersection graphs
    Vahdat, Niloofar
    Moazzami, Dara
    [J]. ARS COMBINATORIA, 2020, 149 : 257 - 277
  • [9] ISOLATED RUPTURE DEGREE OF TREES AND GEAR GRAPHS
    Li, F.
    [J]. NEURAL NETWORK WORLD, 2015, 25 (03) : 287 - 300
  • [10] Computing Optimal Steiner Trees in Polynomial Space
    Fomin, Fedor V.
    Grandoni, Fabrizio
    Kratsch, Dieter
    Lokshtanov, Daniel
    Saurabh, Saket
    [J]. ALGORITHMICA, 2013, 65 (03) : 584 - 604