Maximin distance designs based on densest packings

被引:0
|
作者
Liuqing Yang
Yongdao Zhou
Min-Qian Liu
机构
[1] Nankai University,School of Statistics and Data Science, LPMC & KLMDASR
来源
Metrika | 2021年 / 84卷
关键词
Column-orthogonal; Mirror-symmetric; Non-collapsing design; Rotation; Primary 62K15; Secondary 62K05;
D O I
暂无
中图分类号
学科分类号
摘要
Computer experiments play a crucial role when physical experiments are expensive or difficult to be carried out. As a kind of designs for computer experiments, maximin distance designs have been widely studied. Many existing methods for obtaining maximin distance designs are based on stochastic algorithms, and these methods will be infeasible when the run size or number of factors is large. In this paper, we propose some deterministic construction methods for maximin L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-distance designs in two to five dimensions based on densest packings. The resulting designs have large L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-distances and are mirror-symmetric. Some of them have the same L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-distances as the existing optimal maximin distance designs, and some of the others are completely new. Especially, the resulting 2-dimensional designs possess a good projection property.
引用
下载
收藏
页码:615 / 634
页数:19
相关论文
共 50 条
  • [1] Maximin distance designs based on densest packings
    Yang, Liuqing
    Zhou, Yongdao
    Liu, Min-Qian
    METRIKA, 2021, 84 (05) : 615 - 634
  • [2] MINIMAX AND MAXIMIN DISTANCE DESIGNS
    JOHNSON, ME
    MOORE, LM
    YLVISAKER, D
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 26 (02) : 131 - 148
  • [3] Interleaved lattice-based maximin distance designs
    He, Xu
    BIOMETRIKA, 2019, 106 (02) : 453 - 464
  • [4] On algorithmic construction of maximin distance designs
    Mu, Weiyan
    Xiong, Shifeng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 7972 - 7985
  • [5] Some binary maximin distance designs
    Duckworth, WM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 88 (01) : 149 - 170
  • [6] A method of constructing maximin distance designs
    Li, Wenlong
    Liu, Min-Qian
    Tang, Boxin
    BIOMETRIKA, 2021, 108 (04) : 845 - 855
  • [7] Construction of orthogonal maximin distance designs
    Li, Wenlong
    Tian, Yubin
    Liu, Min-Qian
    JOURNAL OF QUALITY TECHNOLOGY, 2024, 56 (04) : 312 - 326
  • [8] On the connection between maximin distance designs and orthogonal designs
    Wang, Yaping
    Yang, Jianfeng
    Xu, Hongquan
    BIOMETRIKA, 2018, 105 (02) : 471 - 477
  • [9] Efficient maximin distance designs for experiments in mixtures
    Coetzer, R. L. J.
    Rossouw, R. F.
    Le Roux, N. J.
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (09) : 1939 - 1951
  • [10] ON DENSEST PACKINGS OF ELLIPSOIDS
    MATSUMOT.T
    NOWACKI, W
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE KRISTALLGEOMETRIE KRISTALLPHYSIK KRISTALLCHEMIE, 1966, 123 (06): : 401 - &