Maximin distance designs based on densest packings

被引:0
|
作者
Liuqing Yang
Yongdao Zhou
Min-Qian Liu
机构
[1] Nankai University,School of Statistics and Data Science, LPMC & KLMDASR
来源
Metrika | 2021年 / 84卷
关键词
Column-orthogonal; Mirror-symmetric; Non-collapsing design; Rotation; Primary 62K15; Secondary 62K05;
D O I
暂无
中图分类号
学科分类号
摘要
Computer experiments play a crucial role when physical experiments are expensive or difficult to be carried out. As a kind of designs for computer experiments, maximin distance designs have been widely studied. Many existing methods for obtaining maximin distance designs are based on stochastic algorithms, and these methods will be infeasible when the run size or number of factors is large. In this paper, we propose some deterministic construction methods for maximin L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-distance designs in two to five dimensions based on densest packings. The resulting designs have large L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-distances and are mirror-symmetric. Some of them have the same L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-distances as the existing optimal maximin distance designs, and some of the others are completely new. Especially, the resulting 2-dimensional designs possess a good projection property.
引用
下载
收藏
页码:615 / 634
页数:19
相关论文
共 50 条
  • [41] PREDICTING THE DENSEST PACKINGS OF TERNARY AND QUATERNARY MIXTURES OF SOLID PARTICLES
    OUCHIYAMA, N
    TANAKA, T
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1989, 28 (10) : 1530 - 1536
  • [42] Densest packings from size segregation of particles in geometric confinement
    Lv, Xiaohang
    Chan, Ho-Kei
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [43] Some densest two-size disc packings in the plane
    Heppes, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) : 241 - 262
  • [44] An Inequality on the Coding Gain of Densest Lattice Packings in Successive Dimensions
    Banihashemi A.H.
    Khandani A.K.
    Designs, Codes and Cryptography, 1998, 14 (3) : 207 - 212
  • [45] Densest Packings of More than Three d -Spheres Are Nonplanar
    U. Schnell
    J. M. Wills
    Discrete & Computational Geometry, 2000, 24 : 539 - 550
  • [46] Phase Diagram and Structural Diversity of the Densest Binary Sphere Packings
    Hopkins, Adam B.
    Jiao, Yang
    Stillinger, Frank H.
    Torquato, Salvatore
    PHYSICAL REVIEW LETTERS, 2011, 107 (12)
  • [47] Some Densest Two-Size Disc Packings in the Plane
    Aladár Heppes
    Discrete & Computational Geometry, 2003, 30 : 241 - 262
  • [48] AN INTEGER PROGRAMMING ALGORITHM FOR CONSTRUCTING MAXIMIN DISTANCE DESIGNS FROM GOOD LATTICE POINT SETS
    Vazquez, Alan R.
    Xu, Hongquan
    STATISTICA SINICA, 2024, 34 (03) : 1347 - 1366
  • [49] Bounds for Maximin Latin Hypercube Designs
    van Dam, Edwin R.
    Rennen, Gijs
    Husslage, Bart
    OPERATIONS RESEARCH, 2009, 57 (03) : 595 - 608
  • [50] ENTROPIC TRUST REGION FOR DENSEST CRYSTALLOGRAPHIC SYMMETRY GROUP PACKINGS
    Torda, Miloslav
    Goulermas, Ohn Y.
    Pucek, Roland
    Kurlin, Vitaliy
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : B493 - B522