Interleaved lattice-based maximin distance designs

被引:6
|
作者
He, Xu [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Zhongguancun East Rd 55, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Densest packing; Gaussian process model; Separation distance; Space-filling design; LATIN HYPERCUBE DESIGN; COMPUTER; INACCURACY; FRAMEWORK;
D O I
10.1093/biomet/asy069
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a new method to construct maximin distance designs with arbitrary numbers of dimensions and points. The proposed designs hold interleaved-layer structures and are by far the best maximin distance designs in four or more dimensions. Applicable to distance measures with equal or unequal weights, our method is useful for emulating computer experiments when a relatively accurate a priori guess on variable importance is available.
引用
收藏
页码:453 / 464
页数:12
相关论文
共 50 条
  • [1] Interleaved lattice-based minimax distance designs
    He, Xu
    [J]. BIOMETRIKA, 2017, 104 (03) : 713 - 725
  • [2] Efficient Kriging Using Interleaved Lattice-Based Designs with Low Fill and High Separation Distance Properties
    He, Xu
    [J]. SIAM-ASA Journal on Uncertainty Quantification, 2024, 12 (04): : 1113 - 1134
  • [3] Maximin distance designs based on densest packings
    Yang, Liuqing
    Zhou, Yongdao
    Liu, Min-Qian
    [J]. METRIKA, 2021, 84 (05) : 615 - 634
  • [4] Maximin distance designs based on densest packings
    Liuqing Yang
    Yongdao Zhou
    Min-Qian Liu
    [J]. Metrika, 2021, 84 : 615 - 634
  • [5] Lattice-based designs with quasi-optimal separation distance on all projections
    He, Xu
    [J]. BIOMETRIKA, 2021, 108 (02) : 443 - 454
  • [6] OPTIMAL MAXIMIN L1-DISTANCE LATIN HYPERCUBE DESIGNS BASED ON GOOD LATTICE POINT DESIGNS
    Wang, Lin
    Xiao, Qian
    Xu, Hongquan
    [J]. ANNALS OF STATISTICS, 2018, 46 (6B): : 3741 - 3766
  • [7] MINIMAX AND MAXIMIN DISTANCE DESIGNS
    JOHNSON, ME
    MOORE, LM
    YLVISAKER, D
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 26 (02) : 131 - 148
  • [8] On algorithmic construction of maximin distance designs
    Mu, Weiyan
    Xiong, Shifeng
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 7972 - 7985
  • [9] Some binary maximin distance designs
    Duckworth, WM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 88 (01) : 149 - 170
  • [10] A method of constructing maximin distance designs
    Li, Wenlong
    Liu, Min-Qian
    Tang, Boxin
    [J]. BIOMETRIKA, 2021, 108 (04) : 845 - 855